Miscellaneous Solutions

Question 1:

Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, show that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where I is the identity matrix of order 2 and $n \in \mathbf{N}$
Answer
It is given that $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
To show: $\quad \mathrm{P}(n):(a I+b A)^{n}=a^{n} I+n a^{n-1} b A, n \in \mathbf{N}$
We shall prove the result by using the principle of mathematical induction.
For $n=1$, we have:
$\mathrm{P}(1):(a I+b A)=a I+b a^{0} A=a I+b A$
Therefore, the result is true for $n=1$.
Let the result be true for $n=k$.
That is,

$$
\mathrm{P}(k):(a I+b A)^{k}=a^{k} I+k a^{k-1} b A
$$

Now, we prove that the result is true for $n=k+1$.
Consider

$$
\begin{align*}
(a I+b A)^{k+1} & =(a I+b A)^{k}(a I+b A) \\
& =\left(a^{k} I+k a^{k-1} b A\right)(a I+b A) \\
& =a^{k+1} I+k a^{k} b A I+a^{k} b I A+k a^{k-1} b^{2} A^{2} \\
& =a^{k+1} I+(k+1) a^{k} b A+k a^{k-1} b^{2} A^{2} \tag{1}
\end{align*}
$$

Now, $A^{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O$
From (1), we have:

$$
\begin{aligned}
(a I+b A)^{k+1} & =a^{k+1} I+(k+1) a^{k} b A+O \\
& =a^{k+1} I+(k+1) a^{k} b A
\end{aligned}
$$

Therefore, the result is true for $n=k+1$.
Thus, by the principle of mathematical induction, we have:

$$
(a I+b A)^{n}=a^{n} I+n a^{n-1} b A \text { where } A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], n \in \mathbf{N}
$$

Question 2:

If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, prove that $\quad A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in \mathbf{N}$
Answer
It is given that $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
To show: $\quad \mathrm{P}(n): A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in \mathbf{N}$
We shall prove the result by using the principle of mathematical induction.
For $n=1$, we have:

$$
P(1):\left[\begin{array}{lll}
3^{1-1} & 3^{1-1} & 3^{1-1} \\
3^{1-1} & 3^{1-1} & 3^{1-1} \\
3^{1-1} & 3^{1-1} & 3^{1-1}
\end{array}\right]=\left[\begin{array}{lll}
3^{0} & 3^{0} & 3^{0} \\
3^{0} & 3^{0} & 3^{0} \\
3^{0} & 3^{0} & 3^{0}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=A
$$

Therefore, the result is true for $n=1$.
Let the result be true for $n=k$.

$$
P(k): A^{k}=\left[\begin{array}{lll}
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1}
\end{array}\right]
$$

Now, we prove that the result is true for $n=k+1$.
Now, $A^{k+1}=A \cdot A^{k}$
$=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1}\end{array}\right]$
$=\left[\begin{array}{lll}3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} \\ 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} \\ 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1} & 3 \cdot 3^{k-1}\end{array}\right]$
$=\left[\begin{array}{lll}3^{(k+1)-1} & 3^{(k+1)-1} & 3^{(k+1)-1} \\ 3^{(k+1)-1} & 3^{(k+1)-1} & 3^{(k+1)-1} \\ 3^{(k+1)-1} & 3^{(k+1)-1} & 3^{(k+1)-1}\end{array}\right]$
Therefore, the result is true for $n=k+1$.
Thus by the principle of mathematical induction, we have:
$A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in \mathbf{N}$

Question 3:

If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then prove $A^{n}=\left[\begin{array}{ll}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]_{\text {where } n \text { is any positive integer }}$
Answer
It is given that $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$
To prove: $\quad \mathrm{P}(n): A^{n}=\left[\begin{array}{ll}1+2 n & -4 n \\ n & 1-2 n\end{array}\right], n \in \mathbf{N}$
We shall prove the result by using the principle of mathematical induction.
For $n=1$, we have:

$$
P(1): A^{1}=\left[\begin{array}{ll}
1+2 & -4 \\
1 & 1-2
\end{array}\right]=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]=A
$$

Therefore, the result is true for $n=1$.
Let the result be true for $n=k$.
That is,
$P(k): A^{k}=\left[\begin{array}{ll}1+2 k & -4 k \\ k & 1-2 k\end{array}\right], n \in \mathbf{N}$
Now, we prove that the result is true for $n=k+1$.
Consider

$$
\begin{aligned}
& A^{k+1}=A^{k} \cdot A \\
& =\left[\begin{array}{ll}
1+2 k & -4 k \\
k & 1-2 k
\end{array}\right]\left[\begin{array}{lr}
3 & -4 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
3(1+2 k)-4 k & -4(1+2 k)+4 k \\
3 k+1-2 k & -4 k-1(1-2 k)
\end{array}\right] \\
& =\left[\begin{array}{ll}
3+6 k-4 k & -4-8 k+4 k \\
3 k+1-2 k & -4 k-1+2 k
\end{array}\right] \\
& =\left[\begin{array}{ll}
3+2 k & -4-4 k \\
1+k & -1-2 k
\end{array}\right] \\
& =\left[\begin{array}{ll}
1+2(k+1) & -4(k+1) \\
1+k & 1-2(k+1)
\end{array}\right]
\end{aligned}
$$

Therefore, the result is true for $n=k+1$.
Thus, by the principle of mathematical induction, we have:

$$
A^{n}=\left[\begin{array}{ll}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right], n \in \mathbf{N}
$$

Question 4:

If A and B are symmetric matrices, prove that $A B-B A$ is a skew symmetric matrix.
Answer
It is given that A and B are symmetric matrices. Therefore, we have:

$$
\begin{equation*}
A^{\prime}=A \text { and } B^{\prime}=B \tag{1}
\end{equation*}
$$

Now, $(A B-B A)^{\prime}=(A B)^{\prime}-(B A)^{\prime}$ $\left[(A-B)^{\prime}=A^{\prime}-B^{\prime}\right]$

$$
=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}
$$

$$
\left[(A B)^{\prime}=B^{\prime} A^{\prime}\right]
$$

$$
=B A-A B
$$

[Using (1)]

$$
=-(A B-B A)
$$

$\therefore(A B-B A)^{\prime}=-(A B-B A)$
Thus, $(A B-B A)$ is a skew-symmetric matrix.

Question 5:

Show that the matrix $B^{\prime} A B$ is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Answer
We suppose that A is a symmetric matrix, then $A^{\prime}=A$
Consider

$$
\begin{array}{rlrl}
\left(B^{\prime} A B\right)^{\prime} & =\left\{B^{\prime}(A B)\right\}^{\prime} & \\
& =(A B)^{\prime}\left(B^{\prime}\right)^{\prime} & & {\left[(A B)^{\prime}=B^{\prime} A^{\prime}\right]} \\
& =B^{\prime} A^{\prime}(B) & {\left[\left(B^{\prime}\right)^{\prime}=B\right]} \\
& =B^{\prime}\left(A^{\prime} B\right) & & \\
& =B^{\prime}(A B) & & {[\text { Using }(1)]}
\end{array}
$$

$\therefore\left(B^{\prime} A B\right)^{\prime}=B^{\prime} A B$
Thus, if A is a symmetric matrix, then $B^{\prime} A B$ is a symmetric matrix.
Now, we suppose that A is a skew-symmetric matrix.
Then, $A^{\prime}=-A$

Consider

$$
\begin{aligned}
\left(B^{\prime} A B\right)^{\prime} & =\left[B^{\prime}(A B)\right]^{\prime}=(A B)^{\prime}\left(B^{\prime}\right)^{\prime} \\
& =\left(B^{\prime} A^{\prime}\right) B=B^{\prime}(-A) B \\
& =-B^{\prime} A B
\end{aligned}
$$

$\therefore\left(B^{\prime} A B\right)^{\prime}=-B^{\prime} A B$
Thus, if A is a skew-symmetric matrix, then $B^{\prime} A B$ is a skew-symmetric matrix.
Hence, if A is a symmetric or skew-symmetric matrix, then $B^{\prime} A B$ is a symmetric or skewsymmetric matrix accordingly.

Question 6:

Solve system of linear equations, using matrix method.
$2 x-y=-2$
$3 x+4 y=3$
Answer
The given system of equations can be written in the form of $A X=B$, where

$$
A=\left[\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right], X=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } B=\left[\begin{array}{c}
-2 \\
3
\end{array}\right] .
$$

Now,

$$
|A|=8+3=11 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-8+3 \\ 6+6\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}-5 \\ 12\end{array}\right]=\left[\begin{array}{c}-\frac{5}{11} \\ \frac{12}{11}\end{array}\right]$
Hence, $x=\frac{-5}{11}$ and $y=\frac{12}{11}$.

Question 7:

$$
x,\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & 1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]=O
$$

For what values of
Answer
We have:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & 1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]=0} \\
& \Rightarrow\left[\begin{array}{ll}
1+4+1 & 2+0+0 \\
0+2+2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]=0 \\
& \Rightarrow\left[\begin{array}{lll}
6 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]=0 \\
& \Rightarrow[6(0)+2(2)+4(x)]=0 \\
& \Rightarrow[4+4 x]=[0] \\
& \therefore 4+4 x=0 \\
& \Rightarrow x=-1
\end{aligned}
$$

Thus, the required value of x is -1 .

Question 8:

If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=O$
Answer
It is given that $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$

$$
\begin{aligned}
\therefore A^{2}=A \cdot A & =\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& =\left[\begin{array}{lr}
3(3)+1(-1) & 3(1)+1(2) \\
-1(3)+2(-1) & -1(1)+2(2)
\end{array}\right] \\
& =\left[\begin{array}{lr}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right]=\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]
\end{aligned}
$$

\therefore L.H.S. $=A^{2}-5 A+7 I$
$=\left[\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right]-5\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right]-\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]+\left[\begin{array}{cc}7 & 0 \\ 0 & 7\end{array}\right]$
$=\left[\begin{array}{cc}-7 & 0 \\ 0 & -7\end{array}\right]+\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$=O=$ R.H.S.
$\therefore A^{2}-5 A+7 I=O$

Question 9:

$$
\left[\begin{array}{lll}
x & -5 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
4 \\
1
\end{array}\right]=O
$$

Find x, if
Answer
We have:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x & -5 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
4 \\
1
\end{array}\right]=O} \\
& \Rightarrow\left[\begin{array}{lll}
x+0-2 & 0-10+0 & 2 x-5-3]
\end{array}\left[\begin{array}{l}
x \\
4 \\
1
\end{array}\right]=O\right. \\
& \Rightarrow\left[\begin{array}{lll}
x-2 & -10 & 2 x-8
\end{array}\right]\left[\begin{array}{l}
x \\
4 \\
1
\end{array}\right]=O \\
& \Rightarrow[x(x-2)-40+2 x-8]=O \\
& \Rightarrow\left[x^{2}-2 x-40+2 x-8\right]=[0] \\
& \Rightarrow\left[x^{2}-48\right]=[0] \\
& \therefore x^{2}-48=0 \\
& \Rightarrow x^{2}=48 \\
& \Rightarrow x= \pm 4 \sqrt{3}
\end{aligned}
$$

Question 10:

A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market	Products		
I	10000	2000	18000
II	6000	20000	8000

(a) If unit sale prices of x, y and z are Rs 2.50, Rs 1.50 and Rs 1.00 , respectively, find the total revenue in each market with the help of matrix algebra.
(b) If the unit costs of the above three commodities are Rs 2.00 , Rs 1.00 and 50 paise respectively. Find the gross profit.

Answer
(a) The unit sale prices of x, y, and z are respectively given as Rs 2.50, Rs 1.50 , and Rs 1.00.

Consequently, the total revenue in market \mathbf{I} can be represented in the form of a matrix as:
$\left[\begin{array}{lll}10000 & 2000 & 18000\end{array}\right]\left[\begin{array}{l}2.50 \\ 1.50 \\ 1.00\end{array}\right]$
$=10000 \times 2.50+2000 \times 1.50+18000 \times 1.00$
$=25000+3000+18000$
$=46000$
The total revenue in market II can be represented in the form of a matrix as:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
6000 & 20000 & 8000
\end{array}\right]\left[\begin{array}{l}
2.50 \\
1.50 \\
1.00
\end{array}\right]} \\
& =6000 \times 2.50+20000 \times 1.50+8000 \times 1.00 \\
& =15000+30000+8000 \\
& =53000
\end{aligned}
$$

Therefore, the total revenue in market \mathbf{I} isRs 46000 and the same in market II isRs 53000.
(b) The unit cost prices of x, y, and z are respectively given as Rs 2.00, Rs 1.00, and 50 paise.
Consequently, the total cost prices of all the products in market \mathbf{I} can be represented in the form of a matrix as:
$\left[\begin{array}{lll}10000 & 2000 & 18000\end{array}\right]\left[\begin{array}{l}2.00 \\ 1.00 \\ 0.50\end{array}\right]$
$=10000 \times 2.00+2000 \times 1.00+18000 \times 0.50$
$=20000+2000+9000$
$=31000$

Since the total revenue in market \mathbf{I} isRs 46000, the gross profit in this marketis (Rs 46000 - Rs 31000) Rs 15000.

The total cost prices of all the products in market II can be represented in the form of a matrix as:
$\left[\begin{array}{lll}6000 & 20000 & 8000\end{array}\right]\left[\begin{array}{l}2.00 \\ 1.00 \\ 0.50\end{array}\right]$
$=6000 \times 2.00+20000 \times 1.00+8000 \times 0.50$
$=12000+20000+4000$
$=\operatorname{Rs} 36000$
Since the total revenue in market II isRs 53000, the gross profit in this market is (Rs 53000 - Rs 36000) Rs 17000.

Question 11:

Find the matrix X so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
Answer
It is given that:
$X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
The matrix given on the R.H.S. of the equation is a 2×3 matrix and the one given on the L.H.S. of the equation is a 2×3 matrix. Therefore, X has to be a 2×2 matrix.
Now, let $X=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$
Therefore, we have:
$\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{lll}a+4 c & 2 a+5 c & 3 a+6 c \\ b+4 d & 2 b+5 d & 3 b+6 d\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
Equating the corresponding elements of the two matrices, we have:
$a+4 c=-7, \quad 2 a+5 c=-8, \quad 3 a+6 c=-9$
$b+4 d=2, \quad 2 b+5 d=4, \quad 3 b+6 d=6$

Now, $a+4 c=-7 \Rightarrow a=-7-4 c$

$$
\begin{aligned}
\therefore 2 a+5 c=-8 & \Rightarrow-14-8 c+5 c=-8 \\
& \Rightarrow-3 c=6 \\
& \Rightarrow c=-2
\end{aligned}
$$

$\therefore a=-7-4(-2)=-7+8=1$

Now, $b+4 d=2 \Rightarrow b=2-4 d$

$$
\begin{aligned}
\therefore 2 b+5 d=4 & \Rightarrow 4-8 d+5 d=4 \\
& \Rightarrow-3 d=0 \\
& \Rightarrow d=0
\end{aligned}
$$

$\therefore b=2-4(0)=2$
Thus, $a=1, b=2, c=-2, d=0$
Hence, the required matrix X is $\left[\begin{array}{rr}1 & -2 \\ 2 & 0\end{array}\right]$.

Question 12:

If A and B are square matrices of the same order such that $A B=B A$, then prove by induction that $A B^{n}=B^{n} A$. Further, prove that $(A B)^{n}=A^{n} B^{n}$ for all $n \in \mathbf{N}$
Answer
A and B are square matrices of the same order such that $A B=B A$.
To prove: $\quad \mathrm{P}(n): A B^{n}=B^{n} A, n \in \mathbf{N}$
For $n=1$, we have:

$$
\begin{aligned}
& \mathrm{P}(1): A B=B A \quad \quad \text { [Given }] \\
& \\
& \Rightarrow A B^{1}=B^{1} A
\end{aligned}
$$

Therefore, the result is true for $n=1$.
Let the result be true for $n=k$.

$$
\begin{equation*}
\mathrm{P}(k): A B^{k}=B^{k} A \tag{1}
\end{equation*}
$$

Now, we prove that the result is true for $n=k+1$.

$$
\begin{align*}
A B^{k+1} & =A B^{k} \cdot B & & \\
& =\left(B^{k} A\right) B & & {[\text { By }(1)] } \tag{By}\\
& =B^{k}(A B) & & {[\text { Associative law }] } \\
& =B^{k}(B A) & & {[A B=B A(\text { Given })] } \\
& =\left(B^{k} B\right) A & & {[\text { Associative law }] } \\
& =B^{k+1} A & &
\end{align*}
$$

Therefore, the result is true for $n=k+1$.
Thus, by the principle of mathematical induction, we have $A B^{n}=B^{n} A, n \in \mathbf{N}$.
Now, we prove that $(A B)^{n}=A^{n} B^{n}$ for all $n \in \mathbf{N}$
For $n=1$, we have:

$$
(A B)^{1}=A^{1} B^{1}=A B
$$

Therefore, the result is true for $n=1$.
Let the result be true for $n=k$.

$$
\begin{equation*}
(A B)^{k}=A^{k} B^{k} \tag{2}
\end{equation*}
$$

Now, we prove that the result is true for $n=k+1$.

$$
\begin{aligned}
(A B)^{k+1} & =(A B)^{k} \cdot(A B) & & \\
& =\left(A^{k} B^{k}\right) \cdot(A B) & & {[\text { By }(2)] } \\
& =A^{k}\left(B^{k} A\right) B & & {[\text { Associative law }] } \\
& =A^{k}\left(A B^{k}\right) B & & {\left[A B^{n}=B^{n} A \text { for all } n \in \mathbf{N}\right] } \\
& =\left(A^{k} A\right) \cdot\left(B^{k} B\right) & & {[\text { Associative law }] } \\
& =A^{k+1} B^{k+1} & &
\end{aligned}
$$

Therefore, the result is true for $n=k+1$.

Thus, by the principle of mathematical induction, we have $(A B)^{n}=A^{n} B^{n}$, for all natural numbers.

Question 13:

Choose the correct answer in the following questions:
If $A=\left[\begin{array}{rr}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is such that $A^{2}=I$ then
A. $1+\alpha^{2}+\beta \gamma=0$
B. $1-\alpha^{2}+\beta \gamma=0$
C. $1-\alpha^{2}-\beta \gamma=0$
D. $1+\alpha^{2}-\beta \gamma=0$

Answer

Answer: C

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right] \\
& \therefore A^{2}=A \cdot A=\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right]\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right] \\
& =\left[\begin{array}{ll}
\alpha^{2}+\beta \gamma & \alpha \beta-\alpha \beta \\
\alpha \gamma-\alpha \gamma & \beta \gamma+\alpha^{2}
\end{array}\right] \\
& =\left[\begin{array}{lc}
\alpha^{2}+\beta \gamma & 0 \\
0 & \beta \gamma+\alpha^{2}
\end{array}\right]
\end{aligned}
$$

Now, $A^{2}=I \Rightarrow\left[\begin{array}{lc}\alpha^{2}+\beta \gamma & 0 \\ 0 & \beta \gamma+\alpha^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
On comparing the corresponding elements, we have:
$\alpha^{2}+\beta \gamma=1$
$\Rightarrow \alpha^{2}+\beta \gamma-1=0$
$\Rightarrow 1-\alpha^{2}-\beta \gamma=0$

Question 14:

If the matrix A is both symmetric and skew symmetric, then
A. A is a diagonal matrix
B. A is a zero matrix
C. A is a square matrix
D. None of these

Answer

Answer: B

If A is both symmetric and skew-symmetric matrix, then we should have
$A^{\prime}=A$ and $A^{\prime}=-A$
$\Rightarrow A=-A$
$\Rightarrow A+A=O$
$\Rightarrow 2 A=O$
$\Rightarrow A=O$
Therefore, A is a zero matrix.

Question 15:

If A is square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to
A. A B. $I-A$ C. I D. $3 A$

Answer

Answer: C

$$
\begin{aligned}
(I+A)^{3}-7 A & =I^{3}+A^{3}+3 I^{2} A+3 A^{2} I-7 A \\
& =I+A^{3}+3 A+3 A^{2}-7 A \\
& =I+A^{2} \cdot A+3 A+3 A-7 A \\
& =I+A \cdot A-A \\
& =I+A^{2}-A \\
& =I+A-A \\
& =I \\
\therefore(I+A)^{3}-7 A & =I
\end{aligned}
$$

