Exercise 3.1

Question 1:

Find the radian measures corresponding to the following degree measures:

(i) 25° (ii) - 47° 30' (iii) 240° (iv) 520° Answer (i) 25° We know that $180^{\circ} = \pi$ radian $\therefore 25^\circ = \frac{\pi}{180} \times 25 \text{ radian} = \frac{5\pi}{36} \text{ radian}$ (ii) -47° 30' $-47^{\circ} 30' = \frac{-47\frac{1}{2}}{2}$ degree [1° = 60'] $=\frac{-95}{2}$ degree Since $180^\circ = \pi$ radian $\frac{-95}{2}$ deg ree $=\frac{\pi}{180} \times \left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian $\therefore -47^{\circ} 30' = \frac{-19}{72} \pi$ radian (iii) 240° We know that $180^\circ = \pi$ radian $\therefore 240^\circ = \frac{\pi}{180} \times 240 \text{ radian} = \frac{4}{3}\pi \text{ radian}$ (iv) 520° We know that $180^{\circ} = \pi$ radian $\therefore 520^\circ = \frac{\pi}{180} \times 520$ radian $= \frac{26\pi}{9}$ radian

Question 2:

Find the degree measures corresponding to the following radian measures

$$\left(\text{Use }\pi=\frac{22}{7}\right)$$

(i)
$$\frac{11}{16}$$
 (ii) - 4 (iii) $\frac{5\pi}{3}$ (iv) $\frac{7\pi}{6}$
Answer
(i) $\frac{11}{16}$
We know that π radian = 180°
 $\therefore \frac{11}{16}$ radain = $\frac{180}{\pi} \times \frac{11}{16}$ deg ree = $\frac{45 \times 11}{\pi \times 4}$ deg ree
= $\frac{45 \times 11 \times 7}{22 \times 4}$ deg ree = $\frac{315}{8}$ deg ree
= $39\frac{3}{8}$ deg ree
= $39^{\circ} + \frac{3 \times 60}{8}$ min utes [1° = 60']
= $39^{\circ} + 22' + \frac{1}{2}$ min utes
= $39^{\circ} 22'30''$ [1' = 60'']

We know that π radian = 180°

$$-4 \operatorname{radian} = \frac{180}{\pi} \times (-4) \operatorname{deg ree} = \frac{180 \times 7(-4)}{22} \operatorname{deg ree}$$
$$= \frac{-2520}{11} \operatorname{deg ree} = -229 \frac{1}{11} \operatorname{deg ree}$$
$$= -229^{\circ} + \frac{1 \times 60}{11} \operatorname{min utes} \qquad [1^{\circ} = 60']$$
$$= -229^{\circ} + 5' + \frac{5}{11} \operatorname{min utes}$$
$$= -229^{\circ} 5' 27'' \qquad [1' = 60'']$$

5π

(iii) <u>3</u>

We know that π radian = 180°

$$\therefore \frac{5\pi}{3} \text{ radian} = \frac{180}{\pi} \times \frac{5\pi}{3} \text{ deg ree} = 300^{\circ}$$

(iv)
$$\frac{7\pi}{6}$$

We know that π radian = 180°

$$\therefore \frac{7\pi}{6} \text{ radian} = \frac{180}{\pi} \times \frac{7\pi}{6} = 210^{\circ}$$

Question 3:

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Answer

Number of revolutions made by the wheel in 1 minute = 360

 $\frac{360}{60} = 6$

 \therefore Number of revolutions made by the wheel in 1 second = 60

In one complete revolution, the wheel turns an angle of 2π radian.

Hence, in 6 complete revolutions, it will turn an angle of 6 \times 2n radian, i.e.,

12 п radian

Thus, in one second, the wheel turns an angle of 12π radian.

Question 4:

Find the degree measure of the angle subtended at the centre of a circle of radius 100

cm by an arc of length 22 cm
$$\left(\text{Use } \pi = \frac{22}{7} \right)$$
.

Answer

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then

$$\theta = \frac{1}{r}$$

Therefore, forr = 100 cm, I = 22 cm, we have

$$\theta = \frac{22}{100} \text{ radian} = \frac{180}{\pi} \times \frac{22}{100} \text{ deg ree} = \frac{180 \times 7 \times 22}{22 \times 100} \text{ deg ree}$$
$$= \frac{126}{10} \text{ deg ree} = 12\frac{3}{5} \text{ deg ree} = 12^{\circ}36' \quad [1^{\circ} = 60']$$

Thus, the required angle is 12°36'.

Question 5:

In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Answer

Diameter of the circle = 40 cm

$$\frac{40}{2}$$
 cm = 20 cm

 $\therefore \text{Radius } (r) \text{ of the circle} = 2$ Let AB be a chord (length = 20 cm) of the circle.

In $\triangle OAB$, OA = OB = Radius of circle = 20 cm Also, AB = 20 cm

Thus, ΔOAB is an equilateral triangle.

$$\therefore \theta = 60^\circ = \frac{\pi}{3}$$
 radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ

$$\theta = \frac{l}{r}$$

radian at the centre, then

$$\frac{\pi}{3} = \frac{\widehat{AB}}{20} \Longrightarrow \widehat{AB} = \frac{20\pi}{3} \text{ cm}$$

 $\frac{20\pi}{2}$ cm

Thus, the length of the minor arc of the chord is $^{-3}$

Question 6:

If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Answer

Let the radii of the two circles be r_1^r and r_2^r . Let an arc of length / subtend an angle of 60° at the centre of the circle of radius r_1 , while let an arc of length / subtend an angle of 75° at the centre of the circle of radius r_2 .

Now,
$$60^\circ = \frac{\pi}{3}$$
 radian and $75^\circ = \frac{5\pi}{12}$ radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ

radian at the centre, then
$$\theta = \frac{l}{r}$$
 or $l = r\theta$

$$\therefore l = \frac{r_1 \pi}{3} \text{ and } l = \frac{r_2 5 \pi}{12}$$
$$\Rightarrow \frac{r_1 \pi}{3} = \frac{r_2 5 \pi}{12}$$
$$\Rightarrow r_1 = \frac{r_2 5}{4}$$
$$\Rightarrow \frac{r_1}{r_2} = \frac{5}{4}$$

Thus, the ratio of the radii is 5:4.

Question 7:

Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length

```
(i) 10 cm (ii) 15 cm (iii) 21 cm
```

Answer

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ

radian at the centre, then

$$\theta = \frac{l}{r}$$
.
It is given that $r = 75$ cm
(i) Here, $l = 10$ cm
 $\theta = \frac{10}{75}$ radian $= \frac{2}{15}$ radian
(ii) Here, $l = 15$ cm
 $\theta = \frac{15}{75}$ radian $= \frac{1}{5}$ radian

(iii) Here, *l* = 21 cm

$$\theta = \frac{21}{75}$$
 radian $= \frac{7}{25}$ radian