NCERT Miscellaneous Solution

Question 1: Prove that: $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$
Answer
L.H.S.
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)\left[\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\right]$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right)$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$
$=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]$
$=2 \cos \frac{\pi}{13}\left[2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{13}}{2}\right) \cos \left(\frac{\frac{9 \pi}{13}-\frac{4 \pi}{13}}{2}\right)\right]$
$=2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right]$
$=2 \cos \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26}$
$=0=$ R.H.S

Question 2:

Prove that: $(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0$
Answer
L.H.S.
$=(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x$

$$
\begin{aligned}
& =\sin 3 x \sin x+\sin ^{2} x+\cos 3 x \cos x-\cos ^{2} x \\
& =\cos 3 x \cos x+\sin 3 x \sin x-\left(\cos ^{2} x-\sin ^{2} x\right) \\
& =\cos (3 x-x)-\cos 2 x \quad[\cos (A-B)=\cos A \cos B+\sin A \sin B] \\
& =\cos 2 x-\cos 2 x \\
& =0 \\
& =\text { RH.S. }
\end{aligned}
$$

Question 3:

Prove that: $(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$

Answer

L.H.S. $=(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}$
$=\cos ^{2} x+\cos ^{2} y+2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$
$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)+2(\cos x \cos y-\sin x \sin y)$
$=1+1+2 \cos (x+y) \quad[\cos (A+B)=(\cos A \cos B-\sin A \sin B)]$
$=2+2 \cos (x+y)$
$=2[1+\cos (x+y)]$
$=2\left[1+2 \cos ^{2}\left(\frac{x+y}{2}\right)-1\right] \quad\left[\cos 2 A=2 \cos ^{2} A-1\right]$
$=4 \cos ^{2}\left(\frac{x+y}{2}\right)=$ R.H.S.

Question 4:

Prove that: $\quad(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$

Answer

L.H.S. $=(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}$

$$
\begin{aligned}
& =\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y \\
& =\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2[\cos x \cos y+\sin x \sin y] \\
& =1+1-2[\cos (x-y)] \quad[\cos (A-B)=\cos A \cos B+\sin A \sin B] \\
& =2[1-\cos (x-y)] \\
& =2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right] \quad\left[\cos 2 A=1-2 \sin ^{2} A\right] \\
& =4 \sin ^{2}\left(\frac{x-y}{2}\right)=\text { R.H.S. }
\end{aligned}
$$

Question 5:

Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$
Answer
It is known that $\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
\square L.H.S. $=\sin x+\sin 3 x+\sin 5 x+\sin 7 x$

$$
\begin{aligned}
& =(\sin x+\sin 5 x)+(\sin 3 x+\sin 7 x) \\
& =2 \sin \left(\frac{x+5 x}{2}\right) \cdot \cos \left(\frac{x-5 x}{2}\right)+2 \sin \left(\frac{3 x+7 x}{2}\right) \cos \left(\frac{3 x-7 x}{2}\right) \\
& =2 \sin 3 x \cos (-2 x)+2 \sin 5 x \cos (-2 x) \\
& =2 \sin 3 x \cos 2 x+2 \sin 5 x \cos 2 x \\
& =2 \cos 2 x[\sin 3 x+\sin 5 x] \\
& =2 \cos 2 x\left[2 \sin \left(\frac{3 x+5 x}{2}\right) \cdot \cos \left(\frac{3 x-5 x}{2}\right)\right] \\
& =2 \cos 2 x[2 \sin 4 x \cdot \cos (-x)] \\
& =4 \cos 2 x \sin 4 x \cos x=\text { R.H.S. }
\end{aligned}
$$

Question 6:

Prove that: $\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$
Answer

It is known that
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
L.H.S. $=\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}$
$=\frac{\left[2 \sin \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \sin \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}{\left[2 \cos \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \cos \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}$
$=\frac{[2 \sin 6 x \cdot \cos x]+[2 \sin 6 x \cdot \cos 3 x]}{[2 \cos 6 x \cdot \cos x]+[2 \cos 6 x \cdot \cos 3 x]}$
$=\frac{2 \sin 6 x[\cos x+\cos 3 x]}{2 \cos 6 x[\cos x+\cos 3 x]}$
$=\tan 6 x$
$=$ R.H.S.

Question 7:

Prove that: $\sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$
Answer
L.H.S. $=\sin 3 x+\sin 2 x-\sin x$

$$
\begin{aligned}
& =\sin 3 x+(\sin 2 x-\sin x) \\
& =\sin 3 x+\left[2 \cos \left(\frac{2 x+x}{2}\right) \sin \left(\frac{2 x-x}{2}\right)\right] \quad\left[\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right] \\
& =\sin 3 x+\left[2 \cos \left(\frac{3 x}{2}\right) \sin \left(\frac{x}{2}\right)\right] \\
& =\sin 3 x+2 \cos \frac{3 x}{2} \sin \frac{x}{2} \\
& =2 \sin \frac{3 x}{2} \cdot \cos \frac{3 x}{2}+2 \cos \frac{3 x}{2} \sin \frac{x}{2} \quad[\sin 2 A=2 \sin A \cdot \cos B] \\
& =2 \cos \left(\frac{3 x}{2}\right)\left[\sin \left(\frac{3 x}{2}\right)+\sin \left(\frac{x}{2}\right)\right] \\
& =2 \cos \left(\frac{3 x}{2}\right)\left[2 \sin \left\{\frac{\left(\frac{3 x}{2}\right)+\left(\frac{x}{2}\right)}{2}\right\} \cos \left\{\frac{\left(\frac{3 x}{2}\right)-\left(\frac{x}{2}\right)}{2}\right\}\right]\left[\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right] \\
& =2 \cos \left(\frac{3 x}{2}\right) \cdot 2 \sin x \cos \left(\frac{x}{2}\right) \\
& =4 \sin x \cos \left(\frac{x}{2}\right) \cos \left(\frac{3 x}{2}\right)=\text { R.H.S. }
\end{aligned}
$$

Question 8:

$\tan x=-\frac{4}{3}, x$ in quadrant II
Answer
Here, x is in quadrant II.
i.e., $\frac{\pi}{2}<x<\pi$
$\Rightarrow \frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}$
Therefore, $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are all positive.

It is given that $\tan x=-\frac{4}{3}$.
$\sec ^{2} x=1+\tan ^{2} x=1+\left(\frac{-4}{3}\right)^{2}=1+\frac{16}{9}=\frac{25}{9}$
$\therefore \cos ^{2} x=\frac{9}{25}$
$\Rightarrow \cos x= \pm \frac{3}{5}$
As x is in quadrant II, $\cos x$ is negative.
$\cos x=\frac{-3}{5}$
Now, $\cos x=2 \cos ^{2} \frac{x}{2}-1$
$\Rightarrow \frac{-3}{5}=2 \cos ^{2} \frac{x}{2}-1$
$\Rightarrow 2 \cos ^{2} \frac{x}{2}=1-\frac{3}{5}$
$\Rightarrow 2 \cos ^{2} \frac{x}{2}=\frac{2}{5}$
$\Rightarrow \cos ^{2} \frac{x}{2}=\frac{1}{5}$
$\Rightarrow \cos \frac{x}{2}=\frac{1}{\sqrt{5}} \quad\left[\because \cos \frac{x}{2}\right.$ is positive $]$
$\therefore \cos \frac{x}{2}=\frac{\sqrt{5}}{5}$
$\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}=1$
$\Rightarrow \sin ^{2} \frac{x}{2}+\left(\frac{1}{\sqrt{5}}\right)^{2}=1$
$\Rightarrow \sin ^{2} \frac{x}{2}=1-\frac{1}{5}=\frac{4}{5}$
$\Rightarrow \sin \frac{x}{2}=\frac{2}{\sqrt{5}} \quad\left[\because \sin \frac{x}{2}\right.$ is positive $]$
$\therefore \sin \frac{x}{2}=\frac{2 \sqrt{5}}{5}$
$\tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{2}{\sqrt{5}}\right)}{\left(\frac{1}{\sqrt{5}}\right)}=2$
Thus, the respective values of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are $\frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5}$, and 2 .

Question 9:

Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\cos x=-\frac{1}{3}, x$ in quadrant III
Answer
Here, x is in quadrant III.
i.e., $\pi<x<\frac{3 \pi}{2}$
$\Rightarrow \frac{\pi}{2}<\frac{x}{2}<\frac{3 \pi}{4}$
Therefore, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are negative, whereas $\sin \frac{x}{2}$ is positive.
It is given that $\cos x=-\frac{1}{3}$.
$\cos x=1-2 \sin ^{2} \frac{x}{2}$
$\Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2}$
$\Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\left(-\frac{1}{3}\right)}{2}=\frac{\left(1+\frac{1}{3}\right)}{2}=\frac{\frac{4}{3}}{2}=\frac{2}{3}$
$\Rightarrow \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}} \quad\left[\because \sin \frac{x}{2}\right.$ is positive $]$
$\therefore \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3}$
Now, $\quad \cos x=2 \cos ^{2} \frac{x}{2}-1$
$\Rightarrow \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}=\frac{1+\left(-\frac{1}{3}\right)}{2}=\frac{\left(\frac{3-1}{3}\right)}{2}=\frac{\left(\frac{2}{3}\right)}{2}=\frac{1}{3}$
$\Rightarrow \cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \quad\left[\because \cos \frac{x}{2}\right.$ is negative $]$
$\therefore \cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{-\sqrt{3}}{3}$
$\tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{\left(\frac{-1}{\sqrt{3}}\right)}=-\sqrt{2}$
Thus, the respective values of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are $\frac{\sqrt{6}}{3}, \frac{-\sqrt{3}}{3}$, and $-\sqrt{2}$.

Question 10:

Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x=\frac{1}{4}, x$ in quadrant II
Answer
Here, x is in quadrant II.
i.e., $\frac{\pi}{2}<x<\pi$
$\Rightarrow \frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}$
Therefore, $\sin \frac{x}{2}, \cos \frac{x}{2}$, and $\tan \frac{x}{2}$ are all positive.

It is given that $\sin x=\frac{1}{4}$.
$\cos ^{2} x=1-\sin ^{2} x=1-\left(\frac{1}{4}\right)^{2}=1-\frac{1}{16}=\frac{15}{16}$
$\Rightarrow \cos x=-\frac{\sqrt{15}}{4}$ [cos x is negative in quadrant II]

$$
\begin{aligned}
& \sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2}=\frac{1-\left(-\frac{\sqrt{15}}{4}\right)}{2}=\frac{4+\sqrt{15}}{8} \\
& \Rightarrow \sin \frac{x}{2}=\sqrt{\frac{4+\sqrt{15}}{8}}
\end{aligned} \quad\left[\because \sin \frac{x}{2} \text { is positive }\right] \quad \$
$$

$$
=\sqrt{\frac{4+\sqrt{15}}{8} \times \frac{2}{2}}
$$

$$
=\sqrt{\frac{8+2 \sqrt{15}}{16}}
$$

$$
=\frac{\sqrt{8+2 \sqrt{15}}}{4}
$$

$\cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}=\frac{1+\left(-\frac{\sqrt{15}}{4}\right)}{2}=\frac{4-\sqrt{15}}{8}$
$\Rightarrow \cos \frac{x}{2}=\sqrt{\frac{4-\sqrt{15}}{8}} \quad\left[\because \cos \frac{x}{2}\right.$ is positive $]$
$=\sqrt{\frac{4-\sqrt{15}}{8} \times \frac{2}{2}}$
$=\sqrt{\frac{8-2 \sqrt{15}}{16}}$
$=\frac{\sqrt{8-2 \sqrt{15}}}{4}$

$$
\begin{aligned}
& \begin{aligned}
& \tan \frac{\mathrm{x}}{2}=\frac{\sin \frac{\mathrm{x}}{2}}{\cos \frac{\mathrm{x}}{2}}=\frac{\left(\frac{\sqrt{8+2 \sqrt{15}}}{4}\right)}{\left(\frac{\sqrt{8-2 \sqrt{15}}}{4}\right)}=\frac{\sqrt{8+2 \sqrt{15}}}{\sqrt{8-2 \sqrt{15}}} \\
&=\sqrt{\frac{8+2 \sqrt{15}}{8-2 \sqrt{15}} \times \frac{8+2 \sqrt{15}}{8+2 \sqrt{15}}} \\
&=\sqrt{\frac{(8+2 \sqrt{15})^{2}}{64-60}}=\frac{8+2 \sqrt{15}}{2}=4+\sqrt{15} \\
& \text { Thus, the respective values of } \frac{\sin \frac{x}{2}, \cos \frac{x}{2} \text { and } \tan \frac{x}{2} \text { are } \frac{\sqrt{8+2 \sqrt{15}}}{4}}{4}, \frac{\sqrt{8-2 \sqrt{15}}}{4}
\end{aligned} \\
& \text { and } 4+\sqrt{15}
\end{aligned}
$$

