Exercise 4.1

Question 1:
Evaluate the determinants in Exercises 1 and 2.
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$
Answer
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|=2(-1)-4(-5)=-2+20=18$

Question 2:

Evaluate the determinants in Exercises 1 and 2.
(i) $\left\lvert\, \begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right.$ (ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

Answer
(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=(\cos \theta)(\cos \theta)-(-\sin \theta)(\sin \theta)=\cos ^{2} \theta+\sin ^{2} \theta=1$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$=\left(x^{2}-x+1\right)(x+1)-(x-1)(x+1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+2$

Question 3:

If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 A|=4|A|$
Answer
The given matrix is $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$.
$\therefore 2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
\therefore L.H.S. $=|2 A|=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right|=2 \times 4-4 \times 8=8-32=-24$
Now, $|A|=\left|\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right|=1 \times 2-2 \times 4=2-8=-6$
\therefore R.H.S. $=4|A|=4 \times(-6)=-24$
\therefore L.H.S. $=$ R.H.S.

Question 4:

If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 A|=27|A|$.
Answer

The given matrix is

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 4
\end{array}\right]
$$

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $\left(\mathrm{C}_{1}\right)$ for easier calculation.
$|\mathrm{A}|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$
$\therefore 27|A|=27(4)=108$
Now, $3 \mathrm{~A}=3\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12\end{array}\right]$
$\therefore|3 \mathrm{~A}|=3\left|\begin{array}{cc}3 & 6 \\ 0 & 12\end{array}\right|-0\left|\begin{array}{cc}0 & 3 \\ 0 & 12\end{array}\right|+0\left|\begin{array}{ll}0 & 3 \\ 3 & 6\end{array}\right|$

$$
\begin{equation*}
=3(36-0)=3(36)=108 \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), we have:
$|3 A|=27|A|$

Hence, the given result is proved.

Question 5:

Evaluate the determinants
(i) $\left\lvert\, \begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right.$ (iii) $\left|\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$
(ii) $\left\lvert\, \begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right.$ (iv) $\left[\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]$

Answer
(i) Let $A=\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$.

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.
$|A|=-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+0\left|\begin{array}{cc}3 & -2 \\ 3 & 0\end{array}\right|-(-1)\left|\begin{array}{cc}3 & -1 \\ 3 & -5\end{array}\right|=(-15+3)=-12$
(ii) Let $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right]$.

By expanding along the first row, we have:

$$
\begin{aligned}
|A| & =3\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|+4\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right|+5\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right| \\
& =3(1+6)+4(1+4)+5(3-2) \\
& =3(7)+4(5)+5(1) \\
& =21+20+5=46
\end{aligned}
$$

(iii) Let

$$
A=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right]
$$

By expanding along the first row, we have:
$|A|=0\left|\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right|-1\left|\begin{array}{cc}-1 & -3 \\ -2 & 0\end{array}\right|+2\left|\begin{array}{cc}-1 & 0 \\ -2 & 3\end{array}\right|$

$$
=0-1(0-6)+2(-3-0)
$$

$$
=-1(-6)+2(-3)
$$

$$
=6-6=0
$$

(iv) Let

$$
A=\left[\begin{array}{ccc}
2 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right]
$$

By expanding along the first column, we have:
$|A|=2\left|\begin{array}{cc}2 & -1 \\ -5 & 0\end{array}\right|-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+3\left|\begin{array}{cc}-1 & -2 \\ 2 & -1\end{array}\right|$

$$
=2(0-5)-0+3(1+4)
$$

$$
=-10+15=5
$$

Question 6:
If $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$, find $|\mathrm{A}|$.
Answer
Let $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$.
By expanding along the first row, we have:

$$
\begin{aligned}
|A| & =1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{ll}
2 & -3 \\
5 & -9
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =1(-9+12)-1(-18+15)-2(8-5) \\
& =1(3)-1(-3)-2(3) \\
& =3+3-6 \\
& =6-6 \\
& =0
\end{aligned}
$$

Question 7:
Find values of x, if
(i) $\left|\begin{array}{ll}2 & 4 \\ 2 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$ (ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$

Answer
(i) $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
$\Rightarrow 2 \times 1-5 \times 4=2 x \times x-6 \times 4$
$\Rightarrow 2-20=2 x^{2}-24$
$\Rightarrow 2 x^{2}=6$
$\Rightarrow x^{2}=3$
$\Rightarrow x= \pm \sqrt{3}$
(ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
$\Rightarrow 2 \times 5-3 \times 4=x \times 5-3 \times 2 x$
$\Rightarrow 10-12=5 x-6 x$
$\Rightarrow-2=-x$
$\Rightarrow x=2$

Question 8:
If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then x is equal to
(A) 6 (B) ± 6 (C) -6 (D) 0

Answer

Answer: B

$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$
$\Rightarrow x^{2}-36=36-36$
$\Rightarrow x^{2}-36=0$
$\Rightarrow x^{2}=36$
$\Rightarrow x= \pm 6$
Hence, the correct answer is B.

