Question 1:

Prove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|_{\text {is independent of } \theta \text {. }}$
Answer

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right| \\
& =x\left(x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta) \\
& =x^{3}-x+x \sin ^{2} \theta+\sin \theta \cos \theta-\sin \theta \cos \theta+x \cos ^{2} \theta \\
& =x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =x^{3}-x+x \\
& \left.=x^{3} \text { (Independent of } \theta\right)
\end{aligned}
$$

Hence, Δ is independent of θ.

Question 2:

Without expanding the determinant, prove that
$\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$

Answer

Hence, the given result is proved.

Question 3:
Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$
Answer
$\Delta=\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$
Expanding along C_{3}, we have:

$$
\begin{aligned}
\Delta & =-\sin \alpha\left(-\sin \alpha \sin ^{2} \beta-\cos ^{2} \beta \sin \alpha\right)+\cos \alpha\left(\cos \alpha \cos ^{2} \beta+\cos \alpha \sin ^{2} \beta\right) \\
& =\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right)+\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right) \\
& =\sin ^{2} \alpha(1)+\cos ^{2} \alpha(1) \\
& =1
\end{aligned}
$$

Question 4:

If a, b and c are real numbers, and

$$
\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0
$$

Show that either $a+b+c=0$ or $a=b=c$.
Answer

$$
\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right| \\
& =2(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:
$\Delta=2(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ c+a & b-c & b-a \\ a+b & c-a & c-b\end{array}\right|$
Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)] \\
& =2(a+b+c)\left[-b^{2}-c^{2}+2 b c-b c+b a+a c-a^{2}\right] \\
& =2(a+b+c)\left[a b+b c+c a-a^{2}-b^{2}-c^{2}\right]
\end{aligned}
$$

It is given that $\Delta=0$.
$(a+b+c)\left[a b+b c+c a-a^{2}-b^{2}-c^{2}\right]=0$
\Rightarrow Either $a+b+c=0$, or $a b+b c+c a-a^{2}-b^{2}-c^{2}=0$.
Now,
$a b+b c+c a-a^{2}-b^{2}-c^{2}=0$
$\Rightarrow-2 a b-2 b c-2 c a+2 a^{2}+2 b^{2}+2 c^{2}=0$
$\Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
$\Rightarrow(a-b)^{2}=(b-c)^{2}=(c-a)^{2}=0 \quad\left[(a-b)^{2},(b-c)^{2},(c-a)^{2}\right.$ are non-negative $]$
$\Rightarrow(a-b)=(b-c)=(c-a)=0$
$\Rightarrow a=b=c$
Hence, if $\Delta=0$, then either $a+b+c=0$ or $a=b=c$.

Question 5:
Solve the equations $\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0, a \neq 0$
Answer
$\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$, we get:
$\left|\begin{array}{ccc}3 x+a & 3 x+a & 3 x+a \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
$\Rightarrow(3 x+a)\left|\begin{array}{ccc}1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:
$(3 x+a)\left|\begin{array}{lll}1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a\end{array}\right|=0$
Expanding along R_{1}, we have:
$(3 x+a)\left[1 \times a^{2}\right]=0$
$\Rightarrow a^{2}(3 x+a)=0$
But $a \neq 0$.
Therefore, we have:
$3 x+a=0$
$\Rightarrow x=-\frac{a}{3}$

Question 6:
Prove that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
Answer
$\Delta=\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|$
Taking out common factors a, b, and c from $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}, we have:

$$
\Delta=a b c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
b & b+c & c
\end{array}\right|
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:
$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ b & b-c & -c \\ b-a & b & -a\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{1}$, we have:
$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ a+b & b & a \\ b-a & b & -a\end{array}\right|$
Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}$, we have:

$$
\begin{aligned}
\Delta & =a b c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
2 b & 2 b & 0
\end{array}\right| \\
& =2 a b^{2} c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
1 & 1 & 0
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$, we have:
$\Delta=2 a b^{2} c\left|\begin{array}{ccc}a & c-a & a+c \\ a+b & -a & a \\ 1 & 0 & 0\end{array}\right|$
Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =2 a b^{2} c[a(c-a)+a(a+c)] \\
& =2 a b^{2} c\left[a c-a^{2}+a^{2}+a c\right] \\
& =2 a b^{2} c(2 a c) \\
& =4 a^{2} b^{2} c^{2}
\end{aligned}
$$

Hence, the given result is proved.

Question 8:
Let $A=\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]_{\text {verify that }}$
(i) $[\operatorname{adj} A]^{-1}=\operatorname{adj}\left(A^{-1}\right)$
(ii) $\left(A^{-1}\right)^{-1}=A$

Answer
$A=\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]$
$\therefore|A|=1(15-1)+2(-10-1)+1(-2-3)=14-22-5=-13$
Now, $A_{11}=14, A_{12}=11, A_{13}=-5$
$A_{21}=11, A_{22}=4, A_{23}=-3$
$A_{31}=-5, A_{32}=-3, A_{13}=-1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
$=-\frac{1}{13}\left[\begin{array}{lll}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]=\frac{1}{13}\left[\begin{array}{lll}-14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1\end{array}\right]$
(i)

$$
\begin{aligned}
|\operatorname{adj} A| & =14(-4-9)-11(-11-15)-5(-33+20) \\
& =14(-13)-11(-26)-5(-13) \\
& =-182+286+65=169
\end{aligned}
$$

We have,

$$
\begin{aligned}
& \operatorname{adj}(\operatorname{adj} A)=\left[\begin{array}{lll}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right] \\
& \therefore[\operatorname{adj} A]^{-1}=\frac{1}{|\operatorname{adj} A|}(\operatorname{adj}(\operatorname{adj} A))
\end{aligned}
$$

$$
=\frac{1}{169}\left[\begin{array}{lll}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right]
$$

$$
=\frac{1}{13}\left[\begin{array}{lll}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
$$

$$
\text { Now, } A^{-1}=\frac{1}{13}\left[\begin{array}{lll}
-14 & -11 & 5 \\
-11 & -4 & 3 \\
5 & 3 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\
-\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\
\frac{5}{13} & \frac{3}{13} & \frac{1}{13}
\end{array}\right]
$$

$$
\therefore \operatorname{adj}\left(A^{-1}\right)=\left[\begin{array}{lll}
-\frac{4}{169}-\frac{9}{169} & -\left(-\frac{11}{169}-\frac{15}{169}\right) & -\frac{33}{169}+\frac{20}{169} \\
-\left(-\frac{11}{169}-\frac{15}{169}\right) & -\frac{14}{169}-\frac{25}{169} & -\left(-\frac{42}{169}+\frac{55}{169}\right) \\
-\frac{33}{169}+\frac{20}{169} & -\left(-\frac{42}{169}+\frac{55}{169}\right) & \frac{56}{169}-\frac{121}{169}
\end{array}\right]
$$

$$
=\frac{1}{169}\left[\begin{array}{lll}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right]=\frac{1}{13}\left[\begin{array}{lll}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
$$

Hence, $[\operatorname{adj} A]^{-1}=\operatorname{adj}\left(A^{-1}\right)$.
(ii)

We have shown that:
$A^{-1}=\frac{1}{13}\left[\begin{array}{lll}-14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1\end{array}\right]$
And, $\operatorname{adj} A^{-1}=\frac{1}{13}\left[\begin{array}{lll}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right]$
Now,
$\left|A^{-1}\right|=\left(\frac{1}{13}\right)^{3}[-14 \times(-13)+11 \times(-26)+5 \times(-13)]=\left(\frac{1}{13}\right)^{3} \times(-169)=-\frac{1}{13}$
$\therefore\left(A^{-1}\right)^{-1}=\frac{\operatorname{adj} A^{-1}}{\left|A^{-1}\right|}=\frac{1}{\left(-\frac{1}{13}\right)} \times \frac{1}{13}\left[\begin{array}{lll}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right]=\left[\begin{array}{lll}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]=A$
$\therefore\left(A^{-1}\right)^{-1}=A$

Question 9:
Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
Answer

$$
\Delta=\left|\begin{array}{ccc}
x & y & x+y \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
2(x+y) & 2(x+y) & 2(x+y) \\
y & x+y & x \\
x+y & x & y
\end{array}\right| \\
& =2(x+y)\left|\begin{array}{ccc}
1 & 1 & 1 \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:
$\Delta=2(x+y)\left|\begin{array}{ccc}1 & 0 & 0 \\ y & x & x-y \\ x+y & -y & -x\end{array}\right|$
Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =2(x+y)\left[-x^{2}+y(x-y)\right] \\
& =-2(x+y)\left(x^{2}+y^{2}-y x\right) \\
& =-2\left(x^{3}+y^{3}\right)
\end{aligned}
$$

Question 10:
Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$
Answer
$\Delta=\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:
$\Delta=\left|\begin{array}{lll}1 & x & y \\ 0 & y & 0 \\ 0 & 0 & x\end{array}\right|$
Expanding along C_{1}, we have:
$\Delta=1(x y-0)=x y$

Question 11:

Using properties of determinants, prove that:
$\left|\begin{array}{lll}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$
Answer
$\Delta=\left|\begin{array}{lll}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta+\gamma \\
\beta-\alpha & \beta^{2}-\alpha^{2} & \alpha-\beta \\
\gamma-\alpha & \gamma^{2}-\alpha^{2} & \alpha-\gamma
\end{array}\right| \\
& =(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{crl}
\alpha & \alpha^{2} & \beta+\gamma \\
1 & \beta+\alpha & -1 \\
1 & \gamma+\alpha & -1
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$, we have:
$\Delta=(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{llc}\alpha & \alpha^{2} & \beta+\gamma \\ 1 & \beta+\alpha & -1 \\ 0 & \gamma-\beta & 0\end{array}\right|$
Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =(\beta-\alpha)(\gamma-\alpha)[-(\gamma-\beta)(-\alpha-\beta-\gamma)] \\
& =(\beta-\alpha)(\gamma-\alpha)(\gamma-\beta)(\alpha+\beta+\gamma) \\
& =(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)
\end{aligned}
$$

Hence, the given result is proved.

Question 12:

Using properties of determinants, prove that:

$$
\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x)
$$

Answer

$$
\Delta=\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right|
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y-x & y^{2}-x^{2} & p\left(y^{3}-x^{3}\right) \\
z-x & z^{2}-x^{2} & p\left(z^{3}-x^{3}\right)
\end{array}\right| \\
& =(y-x)(z-x)\left|\begin{array}{lcr}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
1 & z+x & p\left(z^{2}+x^{2}+x z\right)
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$, we have:

$$
\begin{aligned}
\Delta & =(y-x)(z-x)\left|\begin{array}{llc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
0 & z-y & p(z-y)(x+y+z)
\end{array}\right| \\
& =(y-x)(z-x)(z-y)\left|\begin{array}{ccc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
0 & 1 & p(x+y+z)
\end{array}\right|
\end{aligned}
$$

Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =(x-y)(y-z)(z-x)\left[(-1)(p)\left(x y^{2}+x^{3}+x^{2} y\right)+1+p x^{3}+p(x+y+z)(x y)\right] \\
& =(x-y)(y-z)(z-x)\left[-p x y^{2}-p x^{3}-p x^{2} y+1+p x^{3}+p x^{2} y+p x y^{2}+p x y z\right] \\
& =(x-y)(y-z)(z-x)(1+p x y z)
\end{aligned}
$$

Hence, the given result is proved.

Question 13:

Using properties of determinants, prove that:
$\left|\begin{array}{ccc}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|=3(a+b+c)(a b+b c+c a)$
Answer

$$
\Delta=\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|
$$

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$, we have:

$$
\Delta=\left|\begin{array}{ccc}
a+b+c & -a+b & -a+c \\
a+b+c & 3 b & -b+c \\
a+b+c & -c+b & 3 c
\end{array}\right|
$$

$$
=(a+b+c)\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
1 & 3 b & -b+c \\
1 & -c+b & 3 c
\end{array}\right|
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:

$$
\Delta=(a+b+c)\left|\begin{array}{lll}
1 & -a+b & -a+c \\
0 & 2 b+a & a-b \\
0 & a-c & 2 c+a
\end{array}\right|
$$

Expanding along C_{1}, we have:

$$
\begin{aligned}
\Delta & =(a+b+c)[(2 b+a)(2 c+a)-(a-b)(a-c)] \\
& =(a+b+c)\left[4 b c+2 a b+2 a c+a^{2}-a^{2}+a c+b a-b c\right] \\
& =(a+b+c)(3 a b+3 b c+3 a c) \\
& =3(a+b+c)(a b+b c+c a)
\end{aligned}
$$

Hence, the given result is proved.

Question 14:

Using properties of determinants, prove that:
$\left|\begin{array}{lll}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$

Answer
$\Delta=\left|\begin{array}{lll}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$, we have:
$\Delta=\left|\begin{array}{ccl}1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 3 & 7+3 p\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-3 R_{2}$, we have:
$\Delta=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 0 & 1\end{array}\right|$
Expanding along C_{1}, we have:
$\Delta=1\left|\begin{array}{cc}1 & 2+p \\ 0 & 1\end{array}\right|=1(1-0)=1$
Hence, the given result is proved.

Question 15:

Using properties of determinants, prove that:
$\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|=0$
Answer
$\Delta=\left|\begin{array}{ccc}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$

$$
=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}
\sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\
\sin \beta \sin \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\
\sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta
\end{array}\right|
$$

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3}$, we have:

$$
\Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}
\cos \alpha \cos \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\
\cos \beta \cos \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\
\cos \gamma \cos \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta
\end{array}\right|
$$

Here, two columns C_{1} and C_{2} are identical.
$\therefore \Delta=0$.
Hence, the given result is proved.

Question 16:

Solve the system of the following equations
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
Answer
Let $\frac{1}{x}=p, \frac{1}{y}=q, \frac{1}{z}=r$.
Then the given system of equations is as follows:
$2 p+3 q+10 r=4$
$4 p-6 q+5 r=1$
$6 p+9 q-20 r=2$
This system can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20\end{array}\right], X=\left[\begin{array}{c}p \\ q \\ r\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$.
Now,

$$
\begin{aligned}
|A| & =2(120-45)-3(-80-30)+10(36+36) \\
& =150+330+720 \\
& =1200
\end{aligned}
$$

A
Thus, A is non-singular. Therefore, its inverse exists.
Now,
$A_{11}=75, A_{12}=110, A_{13}=72$
$A_{21}=150, A_{22}=-100, A_{23}=0$
$A_{31}=75, A_{32}=30, A_{33}=-24$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

$$
=\frac{1}{1200}\left[\begin{array}{lll}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& X=A^{-1} B \\
& \begin{aligned}
& \Rightarrow\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\frac{1}{1200}\left[\begin{array}{lll}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] \\
&=\frac{1}{1200}\left[\begin{array}{c}
300+150+150 \\
440-100+60 \\
288+0-48
\end{array}\right] \\
& \quad=\frac{1}{1200}\left[\begin{array}{l}
600 \\
400 \\
240
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right] \\
& \therefore p=\frac{1}{2}, q=\frac{1}{3} \text {, and } r=\frac{1}{5} \\
& \text { Hence, } x=2, y=3 \text {, and } z=5 .
\end{aligned} \\
& \qquad
\end{aligned}
$$

Question 17:

Choose the correct answer.
If a, b, c, are in A.P., then the determinant
$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$
A. 0 B. 1 C. x D. $2 x$

Answer

Answer: A

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
x+2 & x+3 & x+2 a \\
x+3 & x+4 & x+2 b \\
x+4 & x+5 & x+2 c
\end{array}\right| \\
& =\left|\begin{array}{lll}
x+2 & x+3 & x+2 a \\
x+3 & x+4 & x+(a+c) \\
x+4 & x+5 & x+2 c
\end{array}\right| \quad(2 b=a+c \text { as } a, b, \text { and } c \text { are in A.P. })
\end{aligned}
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$, we have:
$\Delta=\left|\begin{array}{lll}-1 & -1 & a-c \\ x+3 & x+4 & x+(a+c) \\ 1 & 1 & c-a\end{array}\right|$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3}$, we have:
$\Delta=\left|\begin{array}{ccc}0 & 0 & 0 \\ x+3 & x+4 & x+a+c \\ 1 & 1 & c-a\end{array}\right|$
Here, all the elements of the first row $\left(\mathrm{R}_{1}\right)$ are zero.
Hence, we have $\Delta=0$.
The correct answer is A.

Question 18:
Choose the correct answer.

If x, y, z are nonzero real numbers, then the inverse of matrix

$$
A=\left[\begin{array}{ccc}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]_{\text {is }}
$$

A. $\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]_{\text {B. }} x y z\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]$
C. $\frac{1}{x y z}\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]_{\text {D. }} \frac{1}{x y z}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer

Answer: A

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right] \\
& \therefore|A|=x(y z-0)=x y z \neq 0
\end{aligned}
$$

Now, $A_{11}=y z, A_{12}=0, A_{13}=0$

$$
A_{21}=0, A_{22}=x z, A_{23}=0
$$

$$
A_{31}=0, A_{32}=0, A_{33}=x y
$$

$\therefore \operatorname{adj} A=\left[\begin{array}{lll}y z & 0 & 0 \\ 0 & x z & 0 \\ 0 & 0 & x y\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}$ adj A
$=\frac{1}{x y z}\left[\begin{array}{lll}y z & 0 & 0 \\ 0 & x z & 0 \\ 0 & 0 & x y\end{array}\right]$

$$
=\left[\begin{array}{lll}
\frac{y z}{x y z} & 0 & 0 \\
0 & \frac{x z}{x y z} & 0 \\
0 & 0 & \frac{x y}{x y z}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
\frac{1}{x} & 0 & 0 \\
0 & \frac{1}{y} & 0 \\
0 & 0 & \frac{1}{z}
\end{array}\right]=\left[\begin{array}{lll}
x^{-1} & 0 & 0 \\
0 & y^{-1} & 0 \\
0 & 0 & z^{-1}
\end{array}\right]
$$

The correct answer is A.

Question 19:

Choose the correct answer.
Let $A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$, where $0 \leq \theta \leq 2 \pi$, then
A. $\operatorname{Det}(A)=0$
B. $\operatorname{Det}(A) \in(2, \infty)$
C. $\operatorname{Det}(A) \in(2,4)$
D. $\operatorname{Det}(A) \in[2,4]$

Answer

sAnswer: D

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & \sin \theta & 1 \\
-\sin \theta & 1 & \sin \theta \\
-1 & -\sin \theta & 1
\end{array}\right] \\
& \begin{aligned}
\therefore|A| & =1\left(1+\sin ^{2} \theta\right)-\sin \theta(-\sin \theta+\sin \theta)+1\left(\sin ^{2} \theta+1\right) \\
& =1+\sin ^{2} \theta+\sin ^{2} \theta+1 \\
& =2+2 \sin ^{2} \theta \\
& =2\left(1+\sin ^{2} \theta\right)
\end{aligned}
\end{aligned}
$$

Now, $0 \leq \theta \leq 2 \pi$
$\Rightarrow 0 \leq \sin \theta \leq 1$
$\Rightarrow 0 \leq \sin ^{2} \theta \leq 1$
$\Rightarrow 1 \leq 1+\sin ^{2} \theta \leq 2$
$\Rightarrow 2 \leq 2\left(1+\sin ^{2} \theta\right) \leq 4$
$\therefore \operatorname{Det}(A) \in[2,4]$
The correct answer is D.

