Exercise 4.1

Question 1:

Evaluate the determinants in Exercises 1 and 2.

Answer

$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$$

Question 2:

Evaluate the determinants in Exercises 1 and 2.

$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$$

Answer

$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = (\cos \theta)(\cos \theta) - (-\sin \theta)(\sin \theta) = \cos^2 \theta + \sin^2 \theta = 1$$

$$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$$

$$= (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$$

$$= x^3 - x^2 + x + x^2 - x + 1 - (x^2 - 1)$$

$$= x^3 + 1 - x^2 + 1$$

$$= x^3 - x^2 + 2$$

Question 3:

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}, \text{ then show that } |2A| = 4|A|$$

Answer

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}.$$
 The given matrix is

$$\therefore 2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$$

$$\therefore$$
 L.H.S. = $|2A| = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix} = 2 \times 4 - 4 \times 8 = 8 - 32 = -24$

Now,
$$|A| = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} = 1 \times 2 - 2 \times 4 = 2 - 8 = -6$$

$$\therefore$$
 R.H.S. = $4|A| = 4 \times (-6) = -24$

$$\therefore$$
 L.H.S. = R.H.S.

Question 4:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}, \text{ then show that } |3A| = 27|A|.$$

Answer

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

The given matrix is

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column (C_1) for easier calculation.

$$|A| = 1 \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 0 & 4 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = 1(4-0) - 0 + 0 = 4$$

$$\therefore 27|A| = 27(4) = 108$$
 ...(i)

Now,
$$3A = 3\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{bmatrix}$$

$$|3A| = 3 \begin{vmatrix} 3 & 6 \\ 0 & 12 \end{vmatrix} - 0 \begin{vmatrix} 0 & 3 \\ 0 & 12 \end{vmatrix} + 0 \begin{vmatrix} 0 & 3 \\ 3 & 6 \end{vmatrix}$$
$$= 3(36 - 0) = 3(36) = 108 \qquad \dots(ii)$$

From equations (i) and (ii), we have:

$$|3A| = 27|A|$$

Hence, the given result is proved.

Question 5:

Evaluate the determinants

$$\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}_{\text{(iii)}} \begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix}_{\text{(iv)}} \begin{bmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}$$

Answer

$$A = \begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}.$$

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

$$|A| = -0 \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & -2 \\ 3 & 0 \end{vmatrix} - (-1) \begin{vmatrix} 3 & -1 \\ 3 & -5 \end{vmatrix} = (-15+3) = -12$$
(ii) Let
$$A = \begin{bmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{bmatrix}.$$

By expanding along the first row, we have:

$$|A| = 3 \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} + 4 \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$$
$$= 3(1+6) + 4(1+4) + 5(3-2)$$
$$= 3(7) + 4(5) + 5(1)$$
$$= 21 + 20 + 5 = 46$$

$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}.$$

(iii) Let

By expanding along the first row, we have:

$$|A| = 0 \begin{vmatrix} 0 & -3 \\ 3 & 0 \end{vmatrix} - 1 \begin{vmatrix} -1 & -3 \\ -2 & 0 \end{vmatrix} + 2 \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix}$$

$$= 0 - 1(0 - 6) + 2(-3 - 0)$$

$$= -1(-6) + 2(-3)$$

$$= 6 - 6 = 0$$

$$A = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}.$$
(iv) Let

By expanding along the first column, we have:

$$|A| = 2 \begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix} - 0 \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 3 \begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix}$$
$$= 2(0-5) - 0 + 3(1+4)$$
$$= -10 + 15 = 5$$

Question 6:

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}, \text{ find} |A|.$$

Answer

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}$$

By expanding along the first row, we have:

$$|A| = 1 \begin{vmatrix} 1 & -3 \\ 4 & -9 \end{vmatrix} - 1 \begin{vmatrix} 2 & -3 \\ 5 & -9 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 5 & 4 \end{vmatrix}$$

$$= 1(-9+12) - 1(-18+15) - 2(8-5)$$

$$= 1(3) - 1(-3) - 2(3)$$

$$= 3+3-6$$

$$= 6-6$$

$$= 0$$

Question 7:

Find values of x, if

$$\begin{vmatrix} 2 & 4 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$
 (ii)
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$

Answer

$$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$

$$\Rightarrow 2 \times 1 - 5 \times 4 = 2x \times x - 6 \times 4$$

$$\Rightarrow 2 - 20 = 2x^2 - 24$$

$$\Rightarrow 2x^2 = 6$$

$$\Rightarrow x^2 = 3$$

$$\Rightarrow x = \pm \sqrt{3}$$

$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$

$$\Rightarrow 2 \times 5 - 3 \times 4 = x \times 5 - 3 \times 2x$$

$$\Rightarrow 10 - 12 = 5x - 6x$$

$$\Rightarrow -2 = -x$$

Question 8:

 $\Rightarrow x = 2$

$$\begin{vmatrix}
x & 2 \\
18 & x
\end{vmatrix} = \begin{vmatrix}
6 & 2 \\
18 & 6
\end{vmatrix}, \text{ then } x \text{ is equal to}$$

(A) 6 (B)
$$\pm$$
6 (C) $-$ 6 (D) 0

Answer

Answer: B

$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$

$$\Rightarrow x^2 - 36 = 36 - 36$$

$$\Rightarrow x^2 - 36 = 0$$

$$\Rightarrow x^2 = 36$$

$$\Rightarrow x = \pm 6$$

Hence, the correct answer is B.

Exercise 4.2

Question 1:

Using the property of determinants and without expanding, prove that:

$$\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0$$

Answer

$$\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = \begin{vmatrix} x & a & x \\ y & b & y \\ z & c & z \end{vmatrix} + \begin{vmatrix} x & a & a \\ y & b & b \\ z & c & c \end{vmatrix} = 0 + 0 = 0$$

[Here, the two columns of the determinants are identical]

Question 2:

Using the property of determinants and without expanding, prove that:

$$\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0$$

Answer

$$\Delta = \begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2$, we have:

$$\Delta = \begin{vmatrix} a - c & b - a & c - b \\ b - c & c - a & a - b \\ -(a - c) & -(b - a) & -(c - b) \end{vmatrix}$$

$$= -\begin{vmatrix} a - c & b - a & c - b \\ b - c & c - a & a - b \\ a - c & b - a & c - b \end{vmatrix}$$

Here, the two rows R_1 and R_3 are identical.

$$\dot{\cdot} \Delta = 0$$
.

Question 3:

Using the property of determinants and without expanding, prove that:

$$\begin{vmatrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{vmatrix} = 0$$

Answer

$$\begin{vmatrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{vmatrix} = \begin{vmatrix} 2 & 7 & 63 + 2 \\ 3 & 8 & 72 + 3 \\ 5 & 9 & 81 \end{vmatrix} = \begin{vmatrix} 2 & 7 & 2 \\ 3 & 8 & 72 \\ 5 & 9 & 81 \end{vmatrix} + \begin{vmatrix} 2 & 7 & 2 \\ 3 & 8 & 3 \\ 5 & 9 & 5 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & 7 & 9(7) \\ 3 & 8 & 9(8) \\ 5 & 9 & 9(9) \end{vmatrix} + 0 \qquad [Two columns are identical]$$

$$= 9 \begin{vmatrix} 2 & 7 & 7 \\ 3 & 8 & 8 \\ 5 & 9 & 9 \end{vmatrix}$$

$$= 0 \qquad [Two columns are identical]$$

Question 4:

Using the property of determinants and without expanding, prove that:

$$\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix} = 0$$

Answer

$$\Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$$

By applying $C_3 \rightarrow C_3 + C_2$, we have:

$$\Delta = \begin{vmatrix} 1 & bc & ab+bc+ca \\ 1 & ca & ab+bc+ca \\ 1 & ab & ab+bc+ca \end{vmatrix}$$

Here, two columns C_1 and C_3 are proportional.

$$\dot{\cdot} \Delta = 0$$
.

Question 5:

Using the property of determinants and without expanding, prove that:

$$\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$$

Answer

$$\Delta = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix}$$

$$= \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x \end{vmatrix} + \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y \end{vmatrix}$$

$$= \Delta_1 + \Delta_2 \text{ (say)} \qquad ...(1)$$
Now, $\Delta_1 = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x \end{vmatrix}$

Applying $R_2 \rightarrow R_2 - R_3$, we have:

$$\Delta_1 = \begin{vmatrix} b+c & q+r & y+z \\ c & r & z \\ a & p & x \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 - R_2$, we have:

$$\Delta_1 = \begin{vmatrix} b & & q & & y \\ c & & r & & z \\ a & & p & & x \end{vmatrix}$$

Applying $R_1 \leftrightarrow R_3$ and $R_2 \leftrightarrow R_3$, we have:

$$\Delta_{1} = (-1)^{2} \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} = \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} \qquad \dots (2)$$

$$\Delta_2 = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 - R_3$, we have:

$$\Delta_2 = \begin{vmatrix} c & r & z \\ c+a & r+p & z+x \\ b & q & y \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$, we have:

$$\Delta_2 = \begin{vmatrix} c & & r & & z \\ a & & p & & x \\ b & & q & & y \end{vmatrix}$$

Applying $R_1 \leftrightarrow R_2$ and $R_2 \leftrightarrow R_3$, we have:

$$\Delta_{2} = (-1)^{2} \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} = \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} \qquad \dots (3)$$

From (1), (2), and (3), we have:

$$\Delta = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$$

Hence, the given result is proved.

Question 6:

By using properties of determinants, show that:

$$\begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix} = 0$$

Answer

We have,

$$\Delta = \begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

Applying $R_1 \rightarrow cR_1$, we have:

$$\Delta = \frac{1}{c} \begin{vmatrix} 0 & ac & -bc \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 - bR_2$, we have:

$$\Delta = \frac{1}{c} \begin{vmatrix} ab & ac & 0 \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

$$= \frac{a}{c} \begin{vmatrix} b & c & 0 \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

Here, the two rows R_1 and R_3 are identical.

 $..\Delta = 0.$

Question 7:

By using properties of determinants, show that:

$$\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2$$

Answer

$$\begin{split} & \Delta = \begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} \\ & = abc \begin{vmatrix} -a & b & c \\ a & -b & c \\ a & b & -c \end{vmatrix} & \text{[Taking out factors } a, b, c \text{ from } R_1, R_2, \text{ and } R_3] \\ & = a^2b^2c^2 \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} & \text{[Taking out factors } a, b, c \text{ from } C_1, C_2, \text{ and } C_3] \end{split}$$

Applying $R_2 \rightarrow \, R_2 \, + \, R_1$ and $R_3 \rightarrow \, R_3 \, + \, R_1 \text{, we have:}$

$$\Delta = a^{2}b^{2}c^{2}\begin{vmatrix} -1 & 1 & 1\\ 0 & 0 & 2\\ 0 & 2 & 0 \end{vmatrix}$$
$$= a^{2}b^{2}c^{2}(-1)\begin{vmatrix} 0 & 2\\ 2 & 0 \end{vmatrix}$$
$$= -a^{2}b^{2}c^{2}(0-4) = 4a^{2}b^{2}c^{2}$$

Question 8:

By using properties of determinants, show that:

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$
(i)
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

Answer

Let
$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
.

Applying $R_1 \to R_1 - R_3 \, and \, R_2 \to R_2 - R_3$, we have:

$$\Delta = \begin{vmatrix} 0 & a-c & a^2-c^2 \\ 0 & b-c & b^2-c^2 \\ 1 & c & c^2 \end{vmatrix}$$

$$= (c-a)(b-c)\begin{vmatrix} 0 & -1 & -a-c \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2$, we have:

$$\Delta = (b-c)(c-a)\begin{vmatrix} 0 & 0 & -a+b \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}$$
$$= (a-b)(b-c)(c-a)\begin{vmatrix} 0 & 0 & -1 \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}$$

Expanding along C_1 , we have:

$$\Delta = (a-b)(b-c)(c-a)\begin{vmatrix} 0 & -1 \\ 1 & b+c \end{vmatrix} = (a-b)(b-c)(c-a)$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}.$$
(ii) Let

Applying $C_1 \rightarrow C_1 - C_3$ and $C_2 \rightarrow C_2 - C_3$, we have:

$$\Delta = \begin{vmatrix} 0 & 0 & 1 \\ a-c & b-c & c \\ a^3-c^3 & b^3-c^3 & c^3 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & 1 \\ a-c & b-c & c \\ (a-c)(a^2+ac+c^2) & (b-c)(b^2+bc+c^2) & c^3 \end{vmatrix}$$

$$= (c-a)(b-c)\begin{vmatrix} 0 & 0 & 1 \\ -1 & 1 & c \\ -(a^2+ac+c^2) & (b^2+bc+c^2) & c^3 \end{vmatrix}$$

$$|-(a^{2}+ac+c^{2}) \qquad (b^{2}+bc+c^{2}) \qquad c^{3}|$$
Applying $C_{1} \to C_{1} + C_{2}$, we have:
$$\Delta = (c-a)(b-c)\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ (b^{2}-a^{2})+(bc-ac) & (b^{2}+bc+c^{2}) & c^{3} \end{vmatrix}$$

$$= (b-c)(c-a)(a-b)\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ -(a+b+c) & (b^{2}+bc+c^{2}) & c^{3} \end{vmatrix}$$

$$= (a-b)(b-c)(c-a)(a+b+c)\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ -1 & (b^{2}+bc+c^{2}) & c^{3} \end{vmatrix}$$

Expanding along C_1 , we have:

$$\Delta = (a-b)(b-c)(c-a)(a+b+c)(-1)\begin{vmatrix} 0 & 1 \\ 1 & c \end{vmatrix}$$

= $(a-b)(b-c)(c-a)(a+b+c)$

Hence, the given result is proved.

Question 9:

By using properties of determinants, show that:

$$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx)$$

Answer

Let
$$\Delta = \begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix}$$
.

Applying $R_2 \rightarrow R_2$ – $R_1 \, and \, R_3 \rightarrow R_3$ – $R_1,$ we have:

$$\Delta = \begin{vmatrix} x & x^2 & yz \\ y - x & y^2 - x^2 & zx - yz \\ z - x & z^2 - x^2 & xy - yz \end{vmatrix}$$

$$= \begin{vmatrix} x & x^2 & yz \\ -(x - y) & -(x - y)(x + y) & z(x - y) \\ (z - x) & (z - x)(z + x) & -y(z - x) \end{vmatrix}$$

$$= (x - y)(z - x) \begin{vmatrix} x & x^2 & yz \\ -1 & -x - y & z \\ 1 & z + x & -y \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 + R_2$, we have:

$$\Delta = (x - y)(z - x) \begin{vmatrix} x & x^2 & yz \\ -1 & -x - y & z \\ 0 & z - y & z - y \end{vmatrix}$$

$$= (x - y)(z - x)(z - y) \begin{vmatrix} x & x^2 & yz \\ -1 & -x - y & z \\ 0 & 1 & 1 \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = \left[(x-y)(z-x)(z-y) \right] \left[(-1) \begin{vmatrix} x & yz \\ -1 & z \end{vmatrix} + 1 \begin{vmatrix} x & x^2 \\ -1 & -x-y \end{vmatrix} \right]$$

$$= (x-y)(z-x)(z-y) \left[(-xz-yz) + (-x^2-xy+x^2) \right]$$

$$= -(x-y)(z-x)(z-y)(xy+yz+zx)$$

$$= (x-y)(y-z)(z-x)(xy+yz+zx)$$

Hence, the given result is proved.

Question 10:

By using properties of determinants, show that:

$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^{2}$$
(i)
$$\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix} = k^{2}(3y+k)$$
(ii)

Answer

$$\Delta = \begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$$
(i)

Applying $R_1 \rightarrow R_1 + R_2 + R_3 \text{, we have:}$

$$\Delta = \begin{vmatrix} 5x+4 & 5x+4 & 5x+4 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$$

$$= (5x+4)\begin{vmatrix} 1 & 1 & 1 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$, $C_3 \rightarrow C_3 - C_1$, we have:

$$\Delta = (5x+4) \begin{vmatrix} 1 & 0 & 0 \\ 2x & -x+4 & 0 \\ 2x & 0 & -x+4 \end{vmatrix}$$
$$= (5x+4)(4-x)(4-x) \begin{vmatrix} 1 & 0 & 0 \\ 2x & 1 & 0 \\ 2x & 0 & 1 \end{vmatrix}$$

Expanding along C_3 , we have:

$$\Delta = (5x+4)(4-x)^{2} \begin{vmatrix} 1 & 0 \\ 2x & 1 \end{vmatrix}$$
$$= (5x+4)(4-x)^{2}$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix}$$
(ii)

Applying $R_1 \rightarrow \, R_1 \, + \, R_2 + \, R_3,$ we have:

$$\Delta = \begin{vmatrix} 3y+k & 3y+k & 3y+k \\ y & y+k & y \\ y & y & y+k \end{vmatrix}$$

$$= (3y+k)\begin{vmatrix} 1 & 1 & 1 \\ y & y+k & y \\ y & y & y+k \end{vmatrix}$$

Applying $C_2 \rightarrow C_2$ – C_1 and $C_3 \rightarrow C_3$ – $C_1,$ we have:

$$\Delta = (3y+k) \begin{vmatrix} 1 & 0 & 0 \\ y & k & 0 \\ y & 0 & k \end{vmatrix}$$
$$= k^{2} (3y+k) \begin{vmatrix} 1 & 0 & 0 \\ y & 1 & 0 \\ y & 0 & 1 \end{vmatrix}$$

Expanding along C_3 , we have:

$$\Delta = k^2 (3y + k) \begin{vmatrix} 1 & 0 \\ y & 1 \end{vmatrix} = k^2 (3y + k)$$

Hence, the given result is proved.

Question 11:

By using properties of determinants, show that:

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^{3}$$
(i)
$$\begin{vmatrix} x+y+2z & x & y \\ z & y+z+2x & y \\ z & x & z+x+2y \end{vmatrix} = 2(x+y+z)^{3}$$

Answer

$$\Delta = \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have:

$$\Delta = \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

$$= (a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$, $C_2 \rightarrow C_3 - C_4$, we have

$$\Delta = (a+b+c)\begin{vmatrix} 1 & 0 & 0 \\ 2b & -(a+b+c) & 0 \\ 2c & 0 & -(a+b+c) \end{vmatrix}$$

$$= (a+b+c)^{3}\begin{vmatrix} 1 & 0 & 0 \\ 2b & -1 & 0 \\ 2c & 0 & -1 \end{vmatrix}$$

Expanding along C_3 , we have:

$$\Delta = (a+b+c)^3 (-1)(-1) = (a+b+c)^3$$

Hence, the given result is proved.

(ii)
$$\Delta = \begin{vmatrix} x+y+2z & x & y \\ z & y+z+2x & y \\ z & x & z+x+2y \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have:

$$\Delta = \begin{vmatrix} 2(x+y+z) & x & y \\ 2(x+y+z) & y+z+2x & y \\ 2(x+y+z) & x & z+x+2y \end{vmatrix}$$

$$= 2(x+y+z) \begin{vmatrix} 1 & x & y \\ 1 & y+z+2x & y \\ 1 & x & z+x+2y \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1 \, and \, R_3 \rightarrow R_3 - R_1,$ we have:

$$\Delta = 2(x+y+z)\begin{vmatrix} 1 & x & y \\ 0 & x+y+z & 0 \\ 0 & 0 & x+y+z \end{vmatrix}$$
$$= 2(x+y+z)^{3}\begin{vmatrix} 1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = 2(x+y+z)^3(1)(1-0) = 2(x+y+z)^3$$

Hence, the given result is proved.

Question 12:

By using properties of determinants, show that:

$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^3)^2$$

Answer

$$\Delta = \begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have:

$$\Delta = \begin{vmatrix} 1 + x + x^2 & 1 + x + x^2 & 1 + x + x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix}$$

$$= \left(1 + x + x^2\right) \begin{vmatrix} 1 & 1 & 1 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have

$$\Delta = (1+x+x^2) \begin{vmatrix} 1 & 0 & 0 \\ x^2 & 1-x^2 & x-x^2 \\ x & x^2-x & 1-x \end{vmatrix}$$

$$= (1+x+x^2)(1-x)(1-x) \begin{vmatrix} 1 & 0 & 0 \\ x^2 & 1+x & x \\ x & -x & 1 \end{vmatrix}$$

$$= (1-x^3)(1-x) \begin{vmatrix} 1 & 0 & 0 \\ x^2 & 1+x & x \\ x & -x & 1 \end{vmatrix}$$

Expanding along R_1 , we have:

$$\Delta = (1 - x^3)(1 - x)(1) \begin{vmatrix} 1 + x & x \\ -x & 1 \end{vmatrix}$$
$$= (1 - x^3)(1 - x)(1 + x + x^2)$$
$$= (1 - x^3)(1 - x^3)$$
$$= (1 - x^3)^2$$

Hence, the given result is proved.

Question 13:

By using properties of determinants, show that:

$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = \left(1+a^2+b^2\right)^3$$

Answer

$$\Delta = \begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + bR_3$ and $R_2 \rightarrow R_2 - aR_3$, we have:

$$\Delta = \begin{vmatrix} 1+a^2+b^2 & 0 & -b(1+a^2+b^2) \\ 0 & 1+a^2+b^2 & a(1+a^2+b^2) \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$$
$$= (1+a^2+b^2)^2 \begin{vmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$$

Expanding along R_1 , we have:

$$\Delta = (1 + a^2 + b^2)^2 \left[(1) \begin{vmatrix} 1 & a \\ -2a & 1 - a^2 - b^2 \end{vmatrix} - b \begin{vmatrix} 0 & 1 \\ 2b & -2a \end{vmatrix} \right]$$

$$= (1 + a^2 + b^2)^2 \left[1 - a^2 - b^2 + 2a^2 - b(-2b) \right]$$

$$= (1 + a^2 + b^2)^2 (1 + a^2 + b^2)$$

$$= (1 + a^2 + b^2)^3$$

Question 14:

By using properties of determinants, show that:

$$\begin{vmatrix} a^{2} + 1 & ab & ac \\ ab & b^{2} + 1 & bc \\ ca & cb & c^{2} + 1 \end{vmatrix} = 1 + a^{2} + b^{2} + c^{2}$$

Answer

$$\Delta = \begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix}$$

Taking out common factors a, b, and c from R_1 , R_2 , and R_3 respectively, we have:

$$\Delta = abc \begin{vmatrix} a + \frac{1}{a} & b & c \\ a & b + \frac{1}{b} & c \\ a & b & c + \frac{1}{c} \end{vmatrix}$$

Applying $R_2 \to R_2 - R_1$ and $R_3 \to R_3 - R_1$, we have:

$$\Delta = abc\begin{vmatrix} a + \frac{1}{a} & b & c \\ -\frac{1}{a} & \frac{1}{b} & 0 \\ -\frac{1}{a} & 0 & \frac{1}{c} \end{vmatrix}$$

Applying $C_1 \rightarrow aC_1$, $C_2 \rightarrow bC_2$, and $C_3 \rightarrow cC_3$, we have:

$$\Delta = abc \times \frac{1}{abc} \begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = -1 \begin{vmatrix} b^2 & c^2 \\ 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} a^2 + 1 & b^2 \\ -1 & 1 \end{vmatrix}$$
$$= -1(-c^2) + (a^2 + 1 + b^2) = 1 + a^2 + b^2 + c^2$$

Hence, the given result is proved.

Question 15:

Choose the correct answer.

Let A be a square matrix of order 3 \times 3, then |kA| is equal to

A.
$$k|A|_{\mathbf{B}}$$
, $k^2|A|_{\mathbf{C}}$, $k^3|A|_{\mathbf{D}}$, $3k|A|$

Answer

Answer: C

A is a square matrix of order 3×3 .

Let
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
.

Then, $kA = \begin{bmatrix} ka_1 & kb_1 & kc_1 \\ ka_2 & kb_2 & kc_2 \\ ka_3 & kb_3 & kc_3 \end{bmatrix}$.

$$\therefore |kA| = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ ka_2 & kb_2 & kc_2 \\ ka_3 & kb_3 & kc_3 \end{vmatrix}$$

$$= k^3 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
(Taking out common factors k from each row)
$$= k^3 |A|$$

$$\therefore |kA| = k^3 |A|$$

Hence, the correct answer is C.

Question 16:

Which of the following is correct?

- **A.** Determinant is a square matrix.
- **B.** Determinant is a number associated to a matrix.
- **C.** Determinant is a number associated to a square matrix.
- **D.** None of these

Answer

Answer: C

We know that to every square matrix, A = [aij] of order n. We can associate a number

called the determinant of square matrix A, where $aij = (i, j)^{th}$ element of A.

Thus, the determinant is a number associated to a square matrix.

Hence, the correct answer is C.

Exercise 4.3

Question 1:

Find area of the triangle with vertices at the point given in each of the following:

(iii)
$$(-2, -3)$$
, $(3, 2)$, $(-1, -8)$

Answer

(i) The area of the triangle with vertices (1, 0), (6, 0), (4, 3) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[1(0-3) - 0(6-4) + 1(18-0) \right]$$

$$= \frac{1}{2} \left[-3 + 18 \right] = \frac{15}{2} \text{ square units}$$

(ii) The area of the triangle with vertices (2, 7), (1, 1), (10, 8) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [2(1-8) - 7(1-10) + 1(8-10)]$$

$$= \frac{1}{2} [2(-7) - 7(-9) + 1(-2)]$$

$$= \frac{1}{2} [-14 + 63 - 2] = \frac{1}{2} [-16 + 63]$$

$$= \frac{47}{2} \text{ square units}$$

(iii) The area of the triangle with vertices (-2, -3), (3, 2), (-1, -8) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} -2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[-2(2+8) + 3(3+1) + 1(-24+2) \right]$$

$$= \frac{1}{2} \left[-2(10) + 3(4) + 1(-22) \right]$$

$$= \frac{1}{2} \left[-20 + 12 - 22 \right]$$

$$= -\frac{30}{2} = -15$$

Hence, the area of the triangle is $\left|-15\right| = 15$ square units

Question 2:

Show that points

$$A(a,b+c),B(b,c+a),C(c,a+b)$$
 are collinear

Answer

Area of \triangle ABC is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ b-a & a-b & 0 \\ c-a & a-c & 0 \end{vmatrix}$$
 (Applying $R_2 \to R_2 - R_1$ and $R_3 \to R_3 - R_1$)
$$= \frac{1}{2} (a-b)(c-a) \begin{vmatrix} a & b+c & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix}$$

$$= \frac{1}{2} (a-b)(c-a) \begin{vmatrix} a & b+c & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$
 (Applying $R_3 \to R_3 + R_2$)
$$= 0$$
 (All elements of R_3 are 0)

Thus, the area of the triangle formed by points A, B, and C is zero.

Hence, the points A, B, and C are collinear.

Question 3:

Find values of k if area of triangle is 4 square units and vertices are

(i)
$$(k, 0)$$
, $(4, 0)$, $(0, 2)$ (ii) $(-2, 0)$, $(0, 4)$, $(0, k)$

Answer

We know that the area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) is the absolute value of the determinant (Δ) , where

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

It is given that the area of triangle is 4 square units.

$$.\Delta = \pm 4$$
.

(i) The area of the triangle with vertices (k, 0), (4, 0), (0, 2) is given by the relation,

$$\frac{1}{2} \begin{vmatrix} k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[k (0 - 2) - 0 (4 - 0) + 1 (8 - 0) \right]$$

$$= \frac{1}{2} \left[-2k + 8 \right] = -k + 4$$

$$\therefore -k + 4 = \pm 4$$

When
$$-k + 4 = -4$$
, $k = 8$.

When
$$-k + 4 = 4$$
, $k = 0$.

Hence, k = 0, 8.

(ii) The area of the triangle with vertices (-2, 0), (0, 4), (0, k) is given by the relation,

$$\Delta = \begin{bmatrix} \frac{1}{2} & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{bmatrix}$$
$$= \frac{1}{2} \left[-2(4-k) \right]$$
$$= k - 4$$

$$\therefore k - 4 = \pm 4$$

When
$$k - 4 = -4$$
, $k = 0$.

When
$$k - 4 = 4$$
, $k = 8$.

Hence, k = 0, 8.

Question 4:

- (i) Find equation of line joining (1, 2) and (3, 6) using determinants
- (ii) Find equation of line joining (3, 1) and (9, 3) using determinants Answer
- (i) Let P (x, y) be any point on the line joining points A (1, 2) and B (3, 6). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\Rightarrow \frac{1}{2} \Big[1(6 - y) - 2(3 - x) + 1(3y - 6x) \Big] = 0$$

$$\Rightarrow 6 - y - 6 + 2x + 3y - 6x = 0$$

$$\Rightarrow 2y - 4x = 0$$

$$\Rightarrow y = 2x$$

Hence, the equation of the line joining the given points is y = 2x.

(ii) Let P (x, y) be any point on the line joining points A (3, 1) and

B (9, 3). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\frac{1}{2} \begin{vmatrix} 3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\Rightarrow \frac{1}{2} \left[3(3-y) - 1(9-x) + 1(9y-3x) \right] = 0$$

$$\Rightarrow 9 - 3y - 9 + x + 9y - 3x = 0$$

$$\Rightarrow 6y - 2x = 0$$

$$\Rightarrow x - 3y = 0$$

Hence, the equation of the line joining the given points is x - 3y = 0.

Question 5:

If area of triangle is 35 square units with vertices (2, -6), (5, 4), and (k, 4). Then k is

Answer

Answer: D

The area of the triangle with vertices (2, -6), (5, 4), and (k, 4) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \Big[2(4-4) + 6(5-k) + 1(20-4k) \Big]$$

$$= \frac{1}{2} \Big[30 - 6k + 20 - 4k \Big]$$

$$= \frac{1}{2} \Big[50 - 10k \Big]$$

$$= 25 - 5k$$

It is given that the area of the triangle is ± 35 .

Therefore, we have:

$$\Rightarrow 25 - 5k = \pm 35$$
$$\Rightarrow 5(5 - k) = \pm 35$$
$$\Rightarrow 5 - k = \pm 7$$

When 5 - k = -7, k = 5 + 7 = 12.

When 5 - k = 7, k = 5 - 7 = -2.

Hence, k = 12, -2.

The correct answer is D.

Exercise 4.4

Question 1:

Write Minors and Cofactors of the elements of following determinants:

$$\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$
 $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$

Answer

(i) The given determinant is $\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$. Minor of element a_{ij} is M_{ij} .

 $\therefore M_{11} = \text{minor of element } a_{11} = 3$

 M_{12} = minor of element a_{12} = 0

 M_{21} = minor of element a_{21} = -4

 M_{22} = minor of element a_{22} = 2

Cofactor of a_{ij} is $A_{ij} = (-1)^{i+j} M_{ij}$.

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (3) = 3$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (0) = 0$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (-4) = 4$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (2) = 2$$

(ii) The given determinant is $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$. Minor of element a_{ij} is M_{ij} .

 $\therefore M_{11} = \text{minor of element } a_{11} = d$

 M_{12} = minor of element a_{12} = b

 M_{21} = minor of element a_{21} = c

 M_{22} = minor of element a_{22} = a

Cofactor of a_{ij} is $A_{ij} = (-1)^{i+j} M_{ij}$.

$$\therefore A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (d) = d$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (b) = -b$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (c) = -c$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (a) = a$$

Question 2:

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}_{\text{(ii)}} \begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}$$

Answer

(i) The given determinant is $\begin{vmatrix} 0 & 0 & 1 \end{vmatrix}$

By the definition of minors and cofactors, we have:

$$\mathsf{M}_{11} = \mathsf{minor of } a_{11} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

$$\mathsf{M}_{12} = \text{ minor of } a_{12} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

$$\mathsf{M}_{13} = \text{minor of } a_{13} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0$$

$$\mathsf{M}_{21} = \text{minor of } a_{21} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

$$\mathsf{M}_{22} = \mathsf{minor} \; \mathsf{of} \; \mathsf{a}_{22} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

$$\mathsf{M}_{23} = \text{ minor of } a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0$$

$$\mathsf{M}_{31} = \text{ minor of } a_{31} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = 0$$

$$\mathsf{M}_{32} = \text{minor of } \mathsf{a}_{32} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0$$

$$\mathsf{M}_{33} = \mathsf{minor} \; \mathsf{of} \; \mathsf{a}_{33} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

$$A_{11} = \text{cofactor of } a_{11} = (-1)^{1+1} M_{11} = 1$$

$$A_{12} = \text{cofactor of } a_{12} = (-1)^{1+2} M_{12} = 0$$

$$A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = 0$$

$$A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 0$$

$$A_{22} = \text{cofactor of } a_{22} = (-1)^{2+2} M_{22} = 1$$

$$A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = 0$$

$$A_{31} = \text{cofactor of } a_{31} = (-1)^{3+1} M_{31} = 0$$

$$A_{32} = \text{cofactor of } a_{32} = (-1)^{3+2} M_{32} = 0$$

$$A_{33} = \text{cofactor of } a_{33} = (-1)^{3+3} M_{33} = 1$$

(ii) The given determinant is $\begin{vmatrix} 0 & 1 & 2 \end{vmatrix}$

By definition of minors and cofactors, we have:

$$M_{11} = \text{ minor of } a_{11} = \begin{vmatrix} 5 & -1 \\ 1 & 2 \end{vmatrix} = 10 + 1 = 11$$

$$M_{12} = \text{minor of } a_{12} = \begin{vmatrix} 3 & -1 \\ 0 & 2 \end{vmatrix} = 6 - 0 = 6$$

$$M_{13} = \text{ minor of } a_{13} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$$

$$M_{21} = \text{minor of } a_{21} = \begin{vmatrix} 0 & 4 \\ 1 & 2 \end{vmatrix} = 0 - 4 = -4$$

$$M_{22} = \text{minor of } a_{22} = \begin{vmatrix} 1 & 4 \\ 0 & 2 \end{vmatrix} = 2 - 0 = 2$$

$$\mathsf{M}_{23} = \text{ minor of } a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$$

$$M_{31} = \text{minor of } a_{31} = \begin{vmatrix} 0 & 4 \\ 5 & -1 \end{vmatrix} = 0 - 20 = -20$$

$$M_{32} = \text{minor of } a_{32} = \begin{vmatrix} 1 & 4 \\ 3 & -1 \end{vmatrix} = -1 - 12 = -13$$

$$M_{33} = \text{minor of } a_{33} = \begin{vmatrix} 1 & 0 \\ 3 & 5 \end{vmatrix} = 5 - 0 = 5$$

$$A_{11} = \text{cofactor of } a_{11} = (-1)^{1+1} M_{11} = 11$$

$$A_{12} = \text{cofactor of } a_{12} = (-1)^{1+2} M_{12} = -6$$

$$A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = 3$$

$$A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 4$$

$$A_{22}$$
 = cofactor of a_{22} = $(-1)^{2+2}$ M_{22} = 2

$$A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -1$$

$$A_{31} = \text{cofactor of } a_{31} = (-1)^{3+1} M_{31} = -20$$

$$A_{32} = \text{cofactor of } a_{32} = (-1)^{3+2} M_{32} = 13$$

$$A_{33} = \text{cofactor of } a_{33} = (-1)^{3+3} M_{33} = 5$$

Question 3:

$$\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

Using Cofactors of elements of second row, evaluate

Answer

$$\begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}.$$
 The given determinant is

We have:

$$\mathsf{M}_{21} = \begin{vmatrix} 3 & 8 \\ 2 & 3 \end{vmatrix} = 9 - 16 = -7$$

$$\therefore A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 7$$

$$M_{22} = \begin{vmatrix} 5 & 8 \\ 1 & 3 \end{vmatrix} = 15 - 8 = 7$$

$$\therefore A_{22} = \text{cofactor of } a_{22} = (-1)^{2+2} M_{22} = 7$$

$$\mathsf{M}_{23} = \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} = 10 - 3 = 7$$

$$\therefore A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -7$$

We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

Question 4:

$$\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$$

Using Cofactors of elements of third column, evaluate

Answer

$$\begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$$

The given determinant is $^{|1}$

We have:

$$\mathsf{M}_{13} = \begin{vmatrix} 1 & y \\ 1 & z \end{vmatrix} = z - y$$

$$\mathsf{M}_{23} = \begin{vmatrix} 1 & x \\ 1 & z \end{vmatrix} = z - x$$

$$\mathsf{M}_{33} = \begin{vmatrix} 1 & x \\ 1 & y \end{vmatrix} = y - x$$

$$A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = (z - y)$$

$$A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -(z - x) = (x - z)$$

 $A_{33} = \text{cofactor of } a_{33} = (-1)^{3+3} M_{33} = (y - x)$

We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$\begin{split} \therefore \Delta &= a_{13} A_{13} + a_{23} A_{23} + a_{33} A_{33} \\ &= yz (z - y) + zx (x - z) + xy (y - x) \\ &= yz^2 - y^2 z + x^2 z - xz^2 + xy^2 - x^2 y \\ &= (x^2 z - y^2 z) + (yz^2 - xz^2) + (xy^2 - x^2 y) \\ &= z (x^2 - y^2) + z^2 (y - x) + xy (y - x) \\ &= z (x - y) (x + y) + z^2 (y - x) + xy (y - x) \\ &= (x - y) [zx + zy - z^2 - xy] \\ &= (x - y) [z (x - z) + y (z - x)] \\ &= (x - y) (z - x) [-z + y] \\ &= (x - y) (y - z) (z - x) \end{split}$$
 Hence,
$$\Delta = (x - y) (y - z) (z - x).$$

Question 5:

For the matrices A and B, verify that (AB)' = B'A' where

For the matrices
$$A$$
 and B , verify that
$$A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$$
(i)
$$A = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 5 & 7 \end{bmatrix}$$
(ii)

(ii)

Answer

(i)

$$AB = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$$

$$\therefore (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix}$$

Now,
$$A' = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$
 $A' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$

$$\therefore B'A' = \begin{bmatrix} -1\\2\\1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & -3\\2 & -8 & 6\\1 & -4 & 3 \end{bmatrix}$$

Hence, we have verified that (AB)' = B'A'.

(ii)

Class XII

$$AB = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14 \end{bmatrix}$$

$$\therefore (AB)' = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \end{bmatrix}$$

Now,
$$A' = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $B' = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$

$$\therefore B'A' = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \end{bmatrix}$$

Hence, we have verified that (AB)' = B'A'.

Exercise 4.5

Question 1:

Find adjoint of each of the matrices.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

We have,

$$A_{11} = 4$$
, $A_{12} = -3$, $A_{21} = -2$, $A_{22} = 1$

$$\therefore adjA = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

Question 2:

Find adjoint of each of the matrices.

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$

Answer

$$Let A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}.$$

We have,

$$A_{11} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$$

$$A_{12} = -\begin{vmatrix} 2 & 5 \\ -2 & 1 \end{vmatrix} = -(2+10) = -12$$

$$A_{13} = \begin{vmatrix} 2 & 3 \\ -2 & 0 \end{vmatrix} = 0 + 6 = 6$$

$$A_{21} = -\begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -(-1-0) = 1$$

$$A_{22} = \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} = 1 + 4 = 5$$

$$A_{23} = -\begin{vmatrix} 1 & -1 \\ -2 & 0 \end{vmatrix} = -(0-2) = 2$$

$$A_{31} = \begin{vmatrix} -1 & 2 \\ 3 & 5 \end{vmatrix} = -5 - 6 = -11$$

$$A_{32} = -\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = -(5-4) = -1$$

$$A_{33} = \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = 3 + 2 = 5$$

Hence,
$$adjA = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5 \end{bmatrix}.$$

Question 3:

Verify A (adj A) = (adj A) A = |A| I.

$$\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

we have.

$$|A| = -12 - (-12) = -12 + 12 = 0$$

$$\therefore |A|I = 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Now,

$$A_{11} = -6, A_{12} = 4, A_{21} = -3, A_{22} = 2$$

$$\therefore adjA = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$$

Now,

$$A(adjA) = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} -12 + 12 & -6 + 6 \\ 24 - 24 & 12 - 12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Also,
$$(adjA) A = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$
$$= \begin{bmatrix} -12+12 & -18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence, A(adjA) = (adjA)A = |A|I.

Question 4:

Verify A (adj A) = (adj A) A = |A|I.

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$|A| = 1(0-0)+1(9+2)+2(0-0)=11$$

$$|A| = 1(0-0) + 1(9+2) + 2(0-0) = 11$$

$$\therefore |A| I = 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

$$A_{11} = 0, A_{12} = -(9+2) = -11, A_{13} = 0$$

$$A_{21} = -(-3-0) = 3$$
, $A_{22} = 3-2 = 1$, $A_{23} = -(0+1) = -1$

$$A_{31} = 2 - 0 = 2$$
, $A_{32} = -(-2 - 6) = 8$, $A_{33} = 0 + 3 = 3$

$$\therefore adjA = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

$$A(adjA) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 & 3+0-3 & 2+0+9 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Also,

Also,

$$(adjA) \cdot A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0+0+0 & 0+2+9 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$
Hence, $A(adjA) = (adjA) A = |A|A$

Hence, A(adjA) = (adjA)A = |A|I.

Question 6:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$
.

we have,

$$|A| = -2 + 15 = 13$$

Now,

$$A_{11} = 2, A_{12} = 3, A_{21} = -5, A_{22} = -1$$

$$\therefore adjA = \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{13} \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

Question 7:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

Answer

$$Let A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}.$$

We have,

$$|A| = 1(10-0)-2(0-0)+3(0-0)=10$$

Now.

$$A_{11} = 10 - 0 = 10, A_{12} = -(0 - 0) = 0, A_{13} = 0 - 0 = 0$$

$$A_{21} = -(10-0) = -10, A_{22} = 5-0 = 5, A_{23} = -(0-0) = 0$$

$$A_{31} = 8 - 6 = 2$$
, $A_{32} = -(4 - 0) = -4$, $A_{33} = 2 - 0 = 2$

$$\therefore adjA = \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{10} \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

Question 8:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$$

Answer

$$Let A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}.$$

We have,

$$|A| = 1(-3-0)-0+0=-3$$

$$A_{11} = -3 - 0 = -3$$
, $A_{12} = -(-3 - 0) = 3$, $A_{13} = 6 - 15 = -9$
 $A_{21} = -(0 - 0) = 0$, $A_{22} = -1 - 0 = -1$, $A_{23} = -(2 - 0) = -2$
 $A_{31} = 0 - 0 = 0$, $A_{32} = -(0 - 0) = 0$, $A_{33} = 3 - 0 = 3$

$$\therefore adjA = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

$$\therefore adjA = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

Question 9:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$
.

We have,

$$|A| = 2(-1-0)-1(4-0)+3(8-7)$$

$$= 2(-1)-1(4)+3(1)$$

$$= -2-4+3$$

$$= -3$$

Now,

$$A_{11} = -1 - 0 = -1, A_{12} = -(4 - 0) = -4, A_{13} = 8 - 7 = 1$$

 $A_{21} = -(1 - 6) = 5, A_{22} = 2 + 21 = 23, A_{23} = -(4 + 7) = -11$
 $A_{31} = 0 + 3 = 3, A_{32} = -(0 - 12) = 12, A_{33} = -2 - 4 = -6$

$$\therefore adjA = \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\frac{1}{3} \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

Question 10:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$

$$Let A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}.$$

By expanding along C1, we have:

$$|A| = 1(8-6)-0+3(3-4)=2-3=-1$$

Now,

$$A_{11} = 8 - 6 = 2$$
, $A_{12} = -(0+9) = -9$, $A_{13} = 0 - 6 = -6$
 $A_{21} = -(-4+4) = 0$, $A_{22} = 4 - 6 = -2$, $A_{23} = -(-2+3) = -1$
 $A_{31} = 3 - 4 = -1$, $A_{32} = -(-3-0) = 3$, $A_{33} = 2 - 0 = 2$

$$\therefore adjA = \begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$$

Question 11:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$
.

We have,

$$|A| = 1(-\cos^2 \alpha - \sin^2 \alpha) = -(\cos^2 \alpha + \sin^2 \alpha) = -1$$

Now.

$$A_{11} = -\cos^2 \alpha - \sin^2 \alpha = -1, A_{12} = 0, A_{13} = 0$$

$$A_{21} = 0, A_{22} = -\cos\alpha, A_{23} = -\sin\alpha$$

$$A_{31} = 0, A_{32} = -\sin\alpha, A_{33} = \cos\alpha$$

$$\therefore adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = -\begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & -\cos\alpha \end{bmatrix}$$

Question 12:

$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}. \text{ Verify that } (AB)^{-1} = B^{-1}A^{-1}$$

Answer

Let
$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
.

We have,

$$|A| = 15 - 14 = 1$$

Now,

$$A_{11} = 5$$
, $A_{12} = -2$, $A_{21} = -7$, $A_{22} = 3$

$$\therefore adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

Now, let
$$B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
.

We have,

$$|B| = 54 - 56 = -2$$

$$\therefore adjB = \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix}$$

$$\therefore B^{-1} = \frac{1}{|B|} adj B = -\frac{1}{2} \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} & 4 \\ \frac{7}{2} & -3 \end{bmatrix}$$

Now,

$$B^{-1}A^{-1} = \begin{bmatrix} -\frac{9}{2} & 4\\ \frac{7}{2} & -3 \end{bmatrix} \begin{bmatrix} 5 & -7\\ -2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{45}{2} - 8 & \frac{63}{2} + 12\\ \frac{35}{2} + 6 & -\frac{49}{2} - 9 \end{bmatrix} = \begin{bmatrix} -\frac{61}{2} & \frac{87}{2}\\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \dots (1)$$

Then,

$$AB = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 18+49 & 24+63 \\ 12+35 & 16+45 \end{bmatrix}$$
$$= \begin{bmatrix} 67 & 87 \\ 47 & 61 \end{bmatrix}$$

Therefore, we have $|AB| = 67 \times 61 - 87 \times 47 = 4087 - 4089 = -2$.

Also,

$$adj(AB) = \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

$$\therefore (AB)^{-1} = \frac{1}{|AB|} adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \dots (2)$$

From (1) and (2), we have:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Hence, the given result is proved.

Question 13:

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, \text{ show that } A^2 - 5A + 7I = 0. \text{ Hence find } A^{-1}.$$

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

$$\therefore A^{2} - 5A + 7I$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence, $A^2 - 5A + 7I = 0$.

$$\therefore A \cdot A - 5A = -7I$$

$$\Rightarrow A \cdot A \left(A^{-1} \right) - 5AA^{-1} = -7IA^{-1}$$

$$\Rightarrow A \left(AA^{-1} \right) - 5I = -7A^{-1}$$

$$\Rightarrow AI - 5I = -7A^{-1}$$
[Post-multiplying by A^{-1} as $|A| \neq 0$]
$$\Rightarrow AI - 5I = -7A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{7}(A - 5I)$$

$$\Rightarrow A^{-1} = \frac{1}{7}(5I - A)$$

$$= \frac{1}{7} \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

Question 14:

 $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}, \text{ find the numbers } a \text{ and } b \text{ such that } A^2 + aA + bI = O.$ Answer

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

$$\therefore A^{2} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 9+2 & 6+2 \\ 3+1 & 2+1 \end{bmatrix} = \begin{bmatrix} 11 & 8 \\ 4 & 3 \end{bmatrix}$$

Now.

Now,

$$A^{2} + aA + bI = O$$

$$\Rightarrow (AA)A^{-1} + aAA^{-1} + bIA^{-1} = O$$

$$\Rightarrow A(AA^{-1}) + aI + b(IA^{-1}) = O$$

$$\Rightarrow AI + aI + bA^{-1} = O$$

$$\Rightarrow A + aI = -bA^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{b}(A + aI)$$

$$A^{-1} = \frac{1}{|A|} adjA = \frac{1}{1} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

We have:

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = -\frac{1}{b} \begin{pmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \end{pmatrix} = -\frac{1}{b} \begin{bmatrix} 3+a & 2 \\ 1 & 1+a \end{bmatrix} = \begin{bmatrix} \frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b} \end{bmatrix}$$

Comparing the corresponding elements of the two matrices, we have:

$$-\frac{1}{b} = -1 \Rightarrow b = 1$$

$$\frac{-3 - a}{b} = 1 \Rightarrow -3 - a = 1 \Rightarrow a = -4$$

Hence, -4 and 1 are the required values of a and b respectively.

Question 15:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
 show that $A^3 - 6A^2 + 5A + 11I = 0$. Hence, find

For the matrix A^{-1} .

Answer
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1+1+2 & 1+2-1 & 1-3+3 \\ 1+2-6 & 1+4+3 & 1-6-9 \\ 2-1+6 & 2-2-3 & 2+3+9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 4+2+2 & 4+4-1 & 4-6+3 \\ -3+8-28 & -3+16+14 & -3-24-42 \\ 7-3+28 & 7-6-14 & 7+9+42 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}$$

$$A^3 - 6A^2 + 5A + 11I$$

$$= \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O$$

Thus, $A^3 - 6A^2 + 5A + 11I = O$.

Now,

$$A^3 - 6A^2 + 5A + 11I = 0$$

$$\Rightarrow (AAA)A^{-1} - 6(AA)A^{-1} + 5AA^{-1} + 11IA^{-1} = 0$$
 [Post-multiplying by A^{-1} as $|A| \neq 0$]

$$\Rightarrow AA(AA^{-1}) - 6A(AA^{-1}) + 5(AA^{-1}) = -11(IA^{-1})$$

$$\Rightarrow A^2 - 6A + 5I = -11A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{11}(A^2 - 6A + 5I)$$
 ...(1)

Maths

Now.

$$A^2 - 6A + 5I$$

$$A^{2} - 6A + 5I$$

$$= \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} - 6 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} - \begin{bmatrix} 6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 2 & 1 \\ -3 & 13 & -14 \\ 7 & -3 & 19 \end{bmatrix} - \begin{bmatrix} 6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$$
From equation (4) and have

From equation (1), we have:

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}$$

Question 16:

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 verify that $A^3 - 6A^2 + 9A - 4I = O$ and hence find A^{-1}

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4+1+1 & -2-2-1 & 2+1+2 \\ -2-2-1 & 1+4+1 & -1-2-2 \\ 2+1+2 & -1-2-2 & 1+1+4 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$$

$$A^{3} = A^{2}A = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 12+5+5 & -6-10-5 & 6+5+10 \\ -10-6-5 & 5+12+5 & -5-6-10 \\ 10+5+6 & -5-10-6 & 5+5+12 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix}$$

$$A^{3} - 6A^{2} + 9A - 4I$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - 6 \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} + 9 \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - \begin{bmatrix} 36 & -30 & 30 \\ -30 & 36 & -30 \\ 30 & -30 & 36 \end{bmatrix} + \begin{bmatrix} 18 & -9 & 9 \\ -9 & 18 & -9 \\ 9 & -9 & 18 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 40 & -30 & 30 \\ -30 & 40 & -30 \\ 30 & -30 & 40 \end{bmatrix} - \begin{bmatrix} 40 & -30 & 30 \\ -30 & 40 & -30 \\ 30 & -30 & 40 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A^3 - 6A^2 + 9A - 4I = 0$$

Now.

$$A^{3} - 6A^{2} + 9A - 4I = O$$

$$\Rightarrow (AAA)A^{-1} - 6(AA)A^{-1} + 9AA^{-1} - 4IA^{-1} = O$$

$$\Rightarrow AA(AA^{-1}) - 6A(AA^{-1}) + 9(AA^{-1}) = 4(IA^{-1})$$

$$\Rightarrow AAI - 6AI + 9I = 4A^{-1}$$

$$\Rightarrow A^{2} - 6A + 9I = 4A^{-1}$$

$$\Rightarrow A^{-1} = \frac{1}{4}(A^{2} - 6A + 9I) \qquad ...(1)$$

$$A^{2}-6A+9I$$

$$=\begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} - 6\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + 9\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$=\begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} - \begin{bmatrix} 12 & -6 & 6 \\ -6 & 12 & -6 \\ 6 & -6 & 12 \end{bmatrix} + \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

$$=\begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

From equation (1), we have:

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

Question 17:

Let A be a nonsingular square matrix of order 3 \times 3. Then |adjA| is equal to

A.
$$|A|_{B_1} |A|^2_{C_1} |A|^3_{D_1} 3|A|$$

Answer B

We know that,

$$(adjA) A = |A| I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$

$$\Rightarrow |(adjA) A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$

$$\Rightarrow |adjA| |A| = |A|^{3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = |A|^{3} (I)$$

$$\therefore |adjA| = |A|^{2}$$

Hence, the correct answer is B.

Question 18:

If A is an invertible matrix of order 2, then det (A^{-1}) is equal to

A. det (*A*) **B.**
$$\frac{1}{\det(A)}$$
 C. 1 **D.** 0

Answer

$$A^{-1}$$
 exists and $A^{-1} = \frac{1}{|A|} adjA$.

Since A is an invertible matrix,

As matrix A is of order 2, let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

Then,
$$|A| = ad - bc$$
 and $adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

$$A^{-1} = \frac{1}{|A|} adjA = \begin{bmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$$

$$|A^{-1}| = \begin{vmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix} = \frac{1}{|A|^2} (ad - bc) = \frac{1}{|A|^2} . |A| = \frac{1}{|A|}$$

$$\therefore \det\left(A^{-1}\right) = \frac{1}{\det\left(A\right)}$$

Hence, the correct answer is B.

Exercise 4.6

Question 1:

Examine the consistency of the system of equations.

$$x + 2y = 2$$

$$2x + 3y = 3$$

Answer

The given system of equations is:

$$x + 2y = 2$$

$$2x + 3y = 3$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

Now,

$$|A| = 1(3) - 2(2) = 3 - 4 = -1 \neq 0$$

 \therefore A is non-singular.

Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 2:

Examine the consistency of the system of equations.

$$2x - y = 5$$

$$x + y = 4$$

Answer

The given system of equations is:

$$2x - y = 5$$

$$x + y = 4$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}, \ X = \begin{bmatrix} x \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$$

$$|A| = 2(1) - (-1)(1) = 2 + 1 = 3 \neq 0$$

∴ A is non-singular.

Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 3:

Examine the consistency of the system of equations.

$$x + 3y = 5$$

$$2x + 6y = 8$$

Answer

The given system of equations is:

$$x + 3y = 5$$

$$2x + 6y = 8$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Now,

$$|A| = 1(6) - 3(2) = 6 - 6 = 0$$

 \therefore A is a singular matrix.

Now.

$$(adjA) = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$

$$(adjA)B = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 30 - 24 \\ -10 + 8 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \neq O$$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 4:

Examine the consistency of the system of equations.

$$x + y + z = 1$$

$$2x + 3y + 2z = 2$$

$$ax + ay + 2az = 4$$

Answer

The given system of equations is:

$$x + y + z = 1$$

$$2x + 3y + 2z = 2$$

$$ax + ay + 2az = 4$$

This system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}.$$

Now.

$$|A| = 1(6a-2a)-1(4a-2a)+1(2a-3a)$$

= $4a-2a-a=4a-3a=a \neq 0$

 \therefore A is non-singular.

Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 5:

Examine the consistency of the system of equations.

$$3x - y - 2z = 2$$

$$2y - z = -1$$

$$3x - 5y = 3$$

Answer

The given system of equations is:

$$3x - y - 2z = 2$$

$$2y - z = -1$$

$$3x - 5y = 3$$

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

Now,

$$|A| = 3(0-5)-0+3(1+4)=-15+15=0$$

 \therefore A is a singular matrix.

Now,

$$(adjA) = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix}$$

$$(adjA) = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix}$$
$$\therefore (adjA)B = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10 - 10 + 15 \\ -6 - 6 + 9 \\ -12 - 12 + 18 \end{bmatrix} = \begin{bmatrix} -5 \\ -3 \\ -6 \end{bmatrix} \neq O$$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 6:

Examine the consistency of the system of equations.

$$5x - y + 4z = 5$$

$$2x + 3y + 5z = 2$$

$$5x - 2y + 6z = -1$$

Answer

The given system of equations is:

$$5x - y + 4z = 5$$

$$2x + 3y + 5z = 2$$

$$5x - 2y + 6z = -1$$

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}.$$

Now,

$$|A| = 5(18+10)+1(12-25)+4(-4-15)$$

$$= 5(28)+1(-13)+4(-19)$$

$$= 140-13-76$$

$$= 51 \neq 0$$

∴ A is non-singular.

Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 7:

Solve system of linear equations, using matrix method.

$$5x + 2y = 4$$

$$7x + 3y = 5$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}, \ X = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

Now, $|A| = 15 - 14 = 1 \neq 0$.

Thus, A is non-singular. Therefore, its inverse exists.

Now.

$$A^{-1} = \frac{1}{|A|} (adjA)$$

$$\therefore A^{-1} = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 - 10 \\ -28 + 25 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

Hence, x = 2 and y = -3.

Question 8:

Solve system of linear equations, using matrix method.

$$2x - y = -2$$

$$3x + 4y = 3$$

Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}.$$

Now,

$$|A| = 8 + 3 = 11 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

$$A^{-1} = \frac{1}{|A|} adj A = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -8+3 \\ 6+6 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -5 \\ 12 \end{bmatrix} = \begin{bmatrix} -\frac{5}{11} \\ \frac{12}{11} \end{bmatrix}$$
Hence, $x = \frac{-5}{11}$ and $y = \frac{12}{11}$.

Question 9:

Solve system of linear equations, using matrix method.

$$4x - 3y = 3$$

$$3x - 5y = 7$$

Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}, \ X = \begin{bmatrix} x \\ y \end{bmatrix}$$
and $B = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$.

Now,

$$|A| = -20 + 9 = -11 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

$$A^{-1} = \frac{1}{|A|} (adjA) = -\frac{1}{11} \begin{bmatrix} -5 & 3 \\ -3 & 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix}$$
$$\therefore X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 15 - 21 \\ 9 - 28 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -6 \\ -19 \end{bmatrix} = \begin{bmatrix} -\frac{6}{11} \\ -\frac{19}{11} \end{bmatrix}$$

Hence,
$$x = \frac{-6}{11}$$
 and $y = \frac{-19}{11}$.

Question 10:

Solve system of linear equations, using matrix method.

$$5x + 2y = 3$$

$$3x + 2y = 5$$

Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.$$

Now.

$$|A| = 10 - 6 = 4 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Question 11:

Solve system of linear equations, using matrix method.

$$2x + y + z = 1$$

$$x-2y-z=\frac{3}{2}$$
$$3y-5z=9$$

Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ \frac{3}{2} \\ 9 \end{bmatrix}.$$

$$|A| = 2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,
$$A_{11} = 13$$
, $A_{12} = 5$, $A_{13} = 3$
 $A_{21} = 8$, $A_{22} = -10$, $A_{23} = -6$
 $A_{31} = 1$, $A_{32} = 3$, $A_{33} = -5$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34} \begin{bmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{34} \begin{bmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{3}{2} \\ 9 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{34} \begin{bmatrix} 13 + 12 + 9 \\ 5 - 15 + 27 \\ 3 - 9 - 45 \end{bmatrix}$$

$$= \frac{1}{34} \begin{bmatrix} 34\\17\\-51 \end{bmatrix} = \begin{bmatrix} 1\\\frac{1}{2}\\-\frac{3}{2} \end{bmatrix}$$

Hence,
$$x = 1$$
, $y = \frac{1}{2}$, and $z = -\frac{3}{2}$.

Question 12:

Solve system of linear equations, using matrix method.

$$x - y + z = 4$$
$$2x + y - 3z = 0$$

$$x + y + z = 2$$

Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}.$$

Now.

$$|A| = 1(1+3)+1(2+3)+1(2-1) = 4+5+1 = 10 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,
$$A_{11} = 4$$
, $A_{12} = -5$, $A_{13} = 1$
 $A_{21} = 2$, $A_{22} = 0$, $A_{23} = -2$
 $A_{31} = 2$, $A_{32} = 5$, $A_{33} = 3$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 16+0+4 \\ -20+0+10 \\ 4+0+6 \end{bmatrix}$$
$$= \frac{1}{10} \begin{bmatrix} 20 \\ -10 \\ 10 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

Hence, x = 2, y = -1, and z = 1.

Question 13:

Solve system of linear equations, using matrix method.

$$2x + 3y + 3z = 5$$

$$x - 2y + z = -4$$

$$3x - y - 2z = 3$$

Answer

The given system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}.$$

Now.

$$|A| = 2(4+1)-3(-2-3)+3(-1+6) = 2(5)-3(-5)+3(5) = 10+15+15 = 40 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,
$$A_{11} = 5$$
, $A_{12} = 5$, $A_{13} = 5$
 $A_{21} = 3$, $A_{22} = -13$, $A_{23} = 11$
 $A_{31} = 9$, $A_{32} = 1$, $A_{33} = -7$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 25 - 12 + 27 \\ 25 + 52 + 3 \\ 25 - 44 - 21 \end{bmatrix}$$
$$= \frac{1}{40} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Hence, x = 1, y = 2, and z = -1.

Question 14:

Solve system of linear equations, using matrix method.

$$x - y + 2z = 7$$

$$3x + 4y - 5z = -5$$

$$2x - y + 3z = 12$$

Answer

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}.$$

Now.

$$|A| = 1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,
$$A_{11} = 7$$
, $A_{12} = -19$, $A_{13} = -11$

$$A_{21} = 1, A_{22} = -1, A_{23} = -1$$

$$A_{31} = -3, A_{32} = 11, A_{33} = 7$$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Hence, x = 2, y = 1, and z = 3.

Question 15:

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

If $\begin{bmatrix} 1 \\ \end{bmatrix}$, find A^{-1} . Using A^{-1} solve the system of equations

$$2x-3y+5z=11$$

$$3x + 2y - 4z = -5$$

$$x + y - 2z = -3$$

Answer

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

$$|A| = 2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1\neq 0$$

Now,
$$A_{11} = 0$$
, $A_{12} = 2$, $A_{13} = 1$
 $A_{21} = -1$, $A_{22} = -9$, $A_{23} = -5$
 $A_{31} = 2$, $A_{32} = 23$, $A_{33} = 13$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = -\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$$
...(1)

Now, the given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}.$$

The solution of the system of equations is given by $X = A^{-1}B$.

$$X = A^{-1}B$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \qquad [Using (1)]$$

$$= \begin{bmatrix} 0 - 5 + 6 \\ -22 - 45 + 69 \\ -11 - 25 + 39 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Hence, x = 1, y = 2, and z = 3.

Question 16:

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Answer

Let the cost of onions, wheat, and rice per kg be Rs x, Rs y, and Rs z respectively.

Then, the given situation can be represented by a system of equations as:

$$4x + 3y + 2z = 60$$
$$2x + 4y + 6z = 90$$
$$6x + 2y + 3z = 70$$

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}.$$

$$|A| = 4(12-12) - 3(6-36) + 2(4-24) = 0 + 90 - 40 = 50 \neq 0$$
Now,
$$A_{11} = 0, A_{12} = 30, A_{13} = -20$$

$$A_{21} = -5, A_{22} = 0, A_{23} = 10$$

$$A_{31} = 10, A_{32} = -20, A_{33} = 10$$

$$\therefore adjA = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$
$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

Now,

$$X = A^{-1} B$$

$$\Rightarrow X = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix} \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 0 - 450 + 700 \\ 1800 + 0 - 1400 \\ -1200 + 900 + 700 \end{bmatrix}$$

$$= \frac{1}{50} \begin{bmatrix} 250 \\ 400 \\ 400 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 8 \\ 8 \end{bmatrix}$$

 $\therefore x = 5, y = 8, \text{ and } z = 8.$

Hence, the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg, and the cost of rice is Rs 8 per kg.

Miscellaneous Solutions

Question 1:

$$\begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix}$$
 is independent of θ .

Prove that the determinant

Answer

$$\Delta = \begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$$

$$= x(x^2 - 1) - \sin\theta(-x\sin\theta - \cos\theta) + \cos\theta(-\sin\theta + x\cos\theta)$$

$$= x^3 - x + x\sin^2\theta + \sin\theta\cos\theta - \sin\theta\cos\theta + x\cos^2\theta$$

$$= x^3 - x + x(\sin^2\theta + \cos^2\theta)$$

$$= x^3 - x + x$$

$$= x^3 \text{ (Independent of } \theta \text{)}$$

Hence, Δ is independent of θ .

Question 2:

Without expanding the determinant, prove that

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

L.H.S. =
$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix}$$

$$= \frac{1}{abc} \begin{vmatrix} a^2 & a^3 & abc \\ b^2 & b^3 & abc \\ c^2 & c^3 & abc \end{vmatrix}$$

$$= \frac{1}{abc} \cdot abc \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$
[Applying $C_1 \leftrightarrow C_3$ and $C_2 \leftrightarrow C_3$]
$$= R.H.S.$$

Hence, the given result is proved.

Question 3:

Answer

$$\Delta = \begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$$

Expanding along C_3 , we have:

$$\Delta = -\sin\alpha \left(-\sin\alpha \sin^2\beta - \cos^2\beta \sin\alpha \right) + \cos\alpha \left(\cos\alpha \cos^2\beta + \cos\alpha \sin^2\beta \right)$$

$$= \sin^2\alpha \left(\sin^2\beta + \cos^2\beta \right) + \cos^2\alpha \left(\cos^2\beta + \sin^2\beta \right)$$

$$= \sin^2\alpha \left(1 \right) + \cos^2\alpha \left(1 \right)$$

$$= 1$$

Question 4:

$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 0$$

If a, b and c are real numbers, and

Show that either a + b + c = 0 or a = b = c.

Answer

$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have:

$$\Delta = \begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

$$= 2(a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have:

$$\Delta = 2(a+b+c)\begin{vmatrix} 1 & 0 & 0 \\ c+a & b-c & b-a \\ a+b & c-a & c-b \end{vmatrix}$$

Expanding along R_1 , we have:

$$\Delta = 2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]$$

$$= 2(a+b+c)[-b^2-c^2+2bc-bc+ba+ac-a^2]$$

$$= 2(a+b+c)[ab+bc+ca-a^2-b^2-c^2]$$

It is given that $\Delta = 0$.

$$(a+b+c)[ab+bc+ca-a^2-b^2-c^2]=0$$

$$\Rightarrow$$
 Either $a+b+c=0$, or $ab+bc+ca-a^2-b^2-c^2=0$.

Now.

$$ab + bc + ca - a^{2} - b^{2} - c^{2} = 0$$

$$\Rightarrow -2ab - 2bc - 2ca + 2a^{2} + 2b^{2} + 2c^{2} = 0$$

$$\Rightarrow (a - b)^{2} + (b - c)^{2} + (c - a)^{2} = 0$$

$$\Rightarrow (a - b)^{2} = (b - c)^{2} = (c - a)^{2} = 0$$

$$\Rightarrow (a - b) = (b - c) = (c - a) = 0$$

$$\Rightarrow a = b = c$$

$$[(a - b)^{2}, (b - c)^{2}, (c - a)^{2} \text{ are non-negative}]$$

Hence, if $\Delta = 0$, then either a + b + c = 0 or a = b = c.

Question 5:

$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0, a \neq 0$$

Solve the equations

$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we get:

$$\begin{vmatrix} 3x+a & 3x+a & 3x+a \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$
$$\Rightarrow (3x+a)\begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

Applying
$$C_2 \rightarrow C_2 - C_1$$
 and $C_3 \rightarrow C_3 - C_1$, we have:

$$\begin{vmatrix} 1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a \end{vmatrix} = 0$$

Expanding along R₁, we have:

$$(3x+a)[1\times a^2] = 0$$

$$\Rightarrow a^2(3x+a) = 0$$

But $a \neq 0$.

Therefore, we have:

$$3x + a = 0$$

$$\Rightarrow x = -\frac{a}{3}$$

Question 6:

$$\begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix} = 4a^2b^2c^2$$

Prove that |

$$\Delta = \begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix}$$

Taking out common factors a, b, and c from C_1 , C_2 , and C_3 , we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b & b+c & c \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ b & b-c & -c \\ b-a & b & -a \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 + R_1$, we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b-a & b & -a \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 + R_2$, we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ 2b & 2b & 0 \end{vmatrix}$$

$$= 2ab^{2}c \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ 1 & 1 & 0 \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$, we have:

$$\Delta = 2ab^2c \begin{vmatrix} a & c-a & a+c \\ a+b & -a & a \\ 1 & 0 & 0 \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = 2ab^{2}c \left[a(c-a) + a(a+c) \right]$$

$$= 2ab^{2}c \left[ac - a^{2} + a^{2} + ac \right]$$

$$= 2ab^{2}c \left(2ac \right)$$

$$= 4a^{2}b^{2}c^{2}$$

Hence, the given result is proved.

Question 8:

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$
 verify that

(i)
$$\left[adjA\right]^{-1} = adj\left(A^{-1}\right)$$

(ii)
$$(A^{-1})^{-1} = A$$

Answer

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$

$$|A| = 1(15-1)+2(-10-1)+1(-2-3)=14-22-5=-13$$

Now,
$$A_{11} = 14$$
, $A_{12} = 11$, $A_{13} = -5$

$$A_{21} = 11, A_{22} = 4, A_{23} = -3$$

$$A_{31} = -5, A_{32} = -3, A_{13} = -1$$

$$\therefore adjA = \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA)$$

$$= -\frac{1}{13} \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1 \end{bmatrix}$$

(i)

$$|adjA| = 14(-4-9)-11(-11-15)-5(-33+20)$$

= $14(-13)-11(-26)-5(-13)$
= $-182+286+65=169$

We have,

Hence, $[adjA]^{-1} = adj(A^{-1})$

(ii)

$$adj(adjA) = \begin{bmatrix} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{bmatrix}$$

$$\therefore [adjA]^{-1} = \frac{1}{|adjA|} (adj(adjA))$$

$$= \frac{1}{169} \begin{bmatrix} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{bmatrix}$$

$$= \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$$

$$Now, A^{-1} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\ \frac{5}{13} & \frac{3}{13} & \frac{1}{13} \end{bmatrix}$$

$$\therefore adj(A^{-1}) = \begin{bmatrix} -\frac{4}{169} - \frac{9}{169} & -\left(-\frac{11}{169} - \frac{15}{169}\right) & -\frac{33}{169} + \frac{20}{169} \\ -\left(-\frac{11}{169} - \frac{15}{169}\right) & -\left(-\frac{42}{169} + \frac{55}{169}\right) & \frac{56}{169} - \frac{121}{169} \end{bmatrix}$$

$$= \frac{1}{169} \begin{bmatrix} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$$

Page 83 of 96

We have shown that:

$$A^{-1} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5\\ -11 & -4 & 3\\ 5 & 3 & 1 \end{bmatrix}$$

And,
$$adjA^{-1} = \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$$

Now,

$$|A^{-1}| = \left(\frac{1}{13}\right)^3 \left[-14 \times (-13) + 11 \times (-26) + 5 \times (-13)\right] = \left(\frac{1}{13}\right)^3 \times (-169) = -\frac{1}{13}$$

$$\therefore \left(A^{-1}\right)^{-1} = \frac{adjA^{-1}}{\left|A^{-1}\right|} = \frac{1}{\left(-\frac{1}{13}\right)} \times \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix} = A$$

$$\therefore \left(A^{-1}\right)^{-1} = A$$

Question 9:

$$\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$
Evaluate

$$\Delta = \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have:

$$\Delta = \begin{vmatrix} 2(x+y) & 2(x+y) & 2(x+y) \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

$$= 2(x+y) \begin{vmatrix} 1 & 1 & 1 \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have:

$$\Delta = 2(x+y) \begin{vmatrix} 1 & 0 & 0 \\ y & x & x-y \\ x+y & -y & -x \end{vmatrix}$$

Expanding along R_1 , we have:

$$\Delta = 2(x+y)[-x^2 + y(x-y)]$$

= -2(x+y)(x^2 + y^2 - yx)
= -2(x^3 + y^3)

Question 10:

$$\begin{bmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{bmatrix}$$
 Evaluate

$$\Delta = \begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:

$$\Delta = \begin{vmatrix} 1 & x & y \\ 0 & y & 0 \\ 0 & 0 & x \end{vmatrix}$$

Expanding along C_1 , we have:

$$\Delta = 1(xy - 0) = xy$$

Question 11:

Using properties of determinants, prove that:

$$\begin{vmatrix} \alpha & \alpha^{2} & \beta + \gamma \\ \beta & \beta^{2} & \gamma + \alpha \\ \gamma & \gamma^{2} & \alpha + \beta \end{vmatrix} = (\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)(\alpha + \beta + \gamma)$$

Answer

$$\Delta = \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix}$$

Applying
$$R_2 \to R_2 - R_1$$
 and $R_3 \to R_3 - R_1$, we have:

$$\Delta = \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta - \alpha & \beta^2 - \alpha^2 & \alpha - \beta \\ \gamma - \alpha & \gamma^2 - \alpha^2 & \alpha - \gamma \end{vmatrix}$$

$$= (\beta - \alpha)(\gamma - \alpha)\begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ 1 & \beta + \alpha & -1 \\ 1 & \gamma + \alpha & -1 \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 - R_2$, we have:

$$\Delta = (\beta - \alpha)(\gamma - \alpha)\begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ 1 & \beta + \alpha & -1 \\ 0 & \gamma - \beta & 0 \end{vmatrix}$$

Expanding along R₃, we have:

$$\Delta = (\beta - \alpha)(\gamma - \alpha) [-(\gamma - \beta)(-\alpha - \beta - \gamma)]$$

$$= (\beta - \alpha)(\gamma - \alpha)(\gamma - \beta)(\alpha + \beta + \gamma)$$

$$= (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$$

Hence, the given result is proved.

Question 12:

Using properties of determinants, prove that:

$$\begin{vmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix} = (1 + pxyz)(x - y)(y - z)(z - x)$$

Answer

$$\Delta = \begin{vmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:

$$\Delta = \begin{vmatrix} x & x^2 & 1 + px^3 \\ y - x & y^2 - x^2 & p(y^3 - x^3) \\ z - x & z^2 - x^2 & p(z^3 - x^3) \end{vmatrix}$$

$$= (y - x)(z - x) \begin{vmatrix} x & x^2 & 1 + px^3 \\ 1 & y + x & p(y^2 + x^2 + xy) \\ 1 & z + x & p(z^2 + x^2 + xz) \end{vmatrix}$$
Applying $P_{x \to x} = P_{x \to$

Applying $R_3 \rightarrow R_3 - R_2$, we have:

$$\Delta = (y-x)(z-x)\begin{vmatrix} x & x^2 & 1+px^3 \\ 1 & y+x & p(y^2+x^2+xy) \\ 0 & z-y & p(z-y)(x+y+z) \end{vmatrix}$$

$$= (y-x)(z-x)(z-y)\begin{vmatrix} x & x^2 & 1+px^3 \\ 1 & y+x & p(y^2+x^2+xy) \\ 0 & 1 & p(x+y+z) \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = (x - y)(y - z)(z - x) [(-1)(p)(xy^2 + x^3 + x^2y) + 1 + px^3 + p(x + y + z)(xy)]$$

$$= (x - y)(y - z)(z - x) [-pxy^2 - px^3 - px^2y + 1 + px^3 + px^2y + pxy^2 + pxyz]$$

$$= (x - y)(y - z)(z - x)(1 + pxyz)$$

Hence, the given result is proved.

Question 13:

Using properties of determinants, prove that:

$$\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a+b+c)(ab+bc+ca)$$

Answer

$$\Delta = \begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have:

$$\Delta = \begin{vmatrix} a+b+c & -a+b & -a+c \\ a+b+c & 3b & -b+c \\ a+b+c & -c+b & 3c \end{vmatrix}$$

$$= (a+b+c)\begin{vmatrix} 1 & -a+b & -a+c \\ 1 & 3b & -b+c \\ 1 & -c+b & 3c \end{vmatrix}$$

Applying
$$R_2 \to R_2 - R_1$$
 and $R_3 \to R_3 - R_1$, we have:

$$\Delta = (a+b+c)\begin{vmatrix} 1 & -a+b & -a+c \\ 0 & 2b+a & a-b \\ 0 & a-c & 2c+a \end{vmatrix}$$

Expanding along C_1 , we have:

$$\Delta = (a+b+c)[(2b+a)(2c+a)-(a-b)(a-c)]$$

$$= (a+b+c)[4bc+2ab+2ac+a^2-a^2+ac+ba-bc]$$

$$= (a+b+c)(3ab+3bc+3ac)$$

$$= 3(a+b+c)(ab+bc+ca)$$

Hence, the given result is proved.

Question 14:

Using properties of determinants, prove that:

$$\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} = 1$$

$$\Delta = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 - 3R_1$, we have:

$$\Delta = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 3 & 7+3p \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 - 3R_2$, we have:

$$\Delta = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 0 & 1 \end{vmatrix}$$

Expanding along C_1 , we have:

$$\Delta = 1 \begin{vmatrix} 1 & 2+p \\ 0 & 1 \end{vmatrix} = 1(1-0) = 1$$

Hence, the given result is proved.

Question 15:

Using properties of determinants, prove that:

$$\begin{vmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \gamma & \cos \gamma & \cos(\gamma + \delta) \end{vmatrix} = 0$$

$$\Delta = \begin{vmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \gamma & \cos \gamma & \cos(\gamma + \delta) \end{vmatrix}$$

$$\Delta = \begin{vmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \gamma & \cos \gamma & \cos(\gamma + \delta) \end{vmatrix}$$

$$= \frac{1}{\sin \delta \cos \delta} \begin{vmatrix} \sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta - \sin \alpha \sin \delta \\ \sin \beta \sin \delta & \cos \beta \cos \delta & \cos \beta \cos \delta - \sin \beta \sin \delta \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta - \sin \gamma \sin \delta \end{vmatrix}$$
Applying $C = \lambda C + C$, we have:

Applying $C_1 \rightarrow C_1 + C_3$, we have:

$$\Delta = \frac{1}{\sin \delta \cos \delta} \begin{vmatrix} \cos \alpha \cos \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta - \sin \alpha \sin \delta \\ \cos \beta \cos \delta & \cos \beta \cos \delta & \cos \beta \cos \delta - \sin \beta \sin \delta \\ \cos \gamma \cos \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta - \sin \gamma \sin \delta \end{vmatrix}$$

Here, two columns C₁ and C₂ are identical.

$$\Delta = 0$$
.

Hence, the given result is proved.

Question 16:

Solve the system of the following equations

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$
$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$$
$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

$$\frac{1}{x} = p, \frac{1}{y} = q, \frac{1}{z} = r.$$

Then the given system of equations is as follows:

$$2p+3q+10r = 4$$

 $4p-6q+5r = 1$
 $6p+9q-20r = 2$

This system can be written in the form of AX = B, where

Α

$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}.$$

Now,

$$|A| = 2(120-45)-3(-80-30)+10(36+36)$$

= 150+330+720
= 1200

Thus, A is non-singular. Therefore, its inverse exists.

Now,

$$A_{11} = 75, A_{12} = 110, A_{13} = 72$$

$$A_{21} = 150, A_{22} = -100, A_{23} = 0$$

$$A_{31} = 75, A_{32} = 30, A_{33} = -24$$

$$A^{-1} = \frac{1}{|A|} adjA$$

$$= \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75\\ 110 & -100 & 30\\ 72 & 0 & -24 \end{bmatrix}$$

Now,

$$X = A^{-1}B$$

$$\Rightarrow \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$
$$= \frac{1}{1200} \begin{bmatrix} 300 + 150 + 150 \\ 440 - 100 + 60 \\ 288 + 0 - 48 \end{bmatrix}$$
$$= \frac{1}{1200} \begin{bmatrix} 600 \\ 400 \\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

$$p = \frac{1}{2}, q = \frac{1}{3}, \text{ and } r = \frac{1}{5}$$

Hence, x = 2, y = 3, and z = 5.

Question 17:

Choose the correct answer.

If a, b, c, are in A.P., then the determinant

$$\begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$$

A. 0 **B.** 1 **C.** x **D.** 2x

Answer

Answer: A

$$\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$$

$$= \begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+(a+c) \\ x+4 & x+5 & x+2c \end{vmatrix}$$
(2b = a+c as a, b, and c are in A.P.)

Applying $R_1 \rightarrow R_1 - R_2$ and $R_3 \rightarrow R_3 - R_2$, we have:

$$\Delta = \begin{vmatrix} -1 & -1 & a-c \\ x+3 & x+4 & x+(a+c) \\ 1 & 1 & c-a \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_3$, we have:

$$\Delta = \begin{vmatrix} 0 & 0 & 0 \\ x+3 & x+4 & x+a+c \\ 1 & 1 & c-a \end{vmatrix}$$

Here, all the elements of the first row (R_1) are zero.

Hence, we have $\Delta = 0$.

The correct answer is A.

Question 18:

Choose the correct answer.

$$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}.$$

If x, y, z are nonzero real numbers, then the inverse of matrix

$$\mathbf{A.}\begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}_{\mathbf{B.}} xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$$

$$\frac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}_{\mathbf{D}} \frac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer

Answer: A

$$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$

$$\therefore |A| = x(yz - 0) = xyz \neq 0$$

Now,
$$A_{11} = yz$$
, $A_{12} = 0$, $A_{13} = 0$
 $A_{21} = 0$, $A_{22} = xz$, $A_{23} = 0$
 $A_{31} = 0$, $A_{32} = 0$, $A_{33} = xy$

$$\therefore adjA = \begin{bmatrix} yz & 0 & 0 \\ 0 & xz & 0 \\ 0 & 0 & xy \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA$$

The correct answer is A.

Question 19:

Choose the correct answer.

$$A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}, \text{ where } 0 \le \theta \le 2\pi, \text{ then }$$

A. Det
$$(A) = 0$$

B. Det
$$(A) \in (2, \infty)$$

C. Det
$$(A) \in (2, 4)$$

D. Det $(A) \in [2, 4]$

Answer

sAnswer: D

$$A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$$

$$\therefore |A| = 1(1 + \sin^2 \theta) - \sin \theta (-\sin \theta + \sin \theta) + 1(\sin^2 \theta + 1)$$

$$= 1 + \sin^2 \theta + \sin^2 \theta + 1$$

$$= 2 + 2\sin^2 \theta$$

$$= 2(1 + \sin^2 \theta)$$
Now, $0 \le \theta \le 2\pi$

$$\Rightarrow 0 \le \sin \theta \le 1$$

$$\Rightarrow 0 \le \sin^2 \theta \le 1$$

$$\Rightarrow 1 \le 1 + \sin^2 \theta \le 2$$

$$\Rightarrow 2 \le 2(1 + \sin^2 \theta) \le 4$$

$$\therefore \text{Det}(A) \in [2, 4]$$

The correct answer is D.