NCERT Miscellaneous Solutions

Question 1:
Evaluate: $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$
Answer

$$
\begin{aligned}
& {\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}} \\
& =\left[i^{4 \times 4+2}+\frac{1}{i^{4 \times 6+1}}\right]^{3} \\
& =\left[\left(i^{4}\right)^{4} \cdot i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3} \\
& =\left[i^{2}+\frac{1}{i}\right]^{3} \\
& =\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3} \\
& =\left[-1+\frac{i}{i^{2}}\right]^{3} \\
& =[-1-i]^{3} \\
& =(-1)^{3}[1+i]^{3} \\
& =-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right] \\
& =-\left[1+i^{3}+3 i+3 i^{2}\right] \\
& =-[1-i+3 i-3] \\
& =-[-2+2 i] \\
& =2-2 i
\end{aligned}
$$

Question 2:

For any two complex numbers z_{1} and z_{2}, prove that
$\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}$
Answer

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$

$$
\begin{aligned}
& \therefore \begin{aligned}
& \therefore z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \\
&=x_{1}\left(x_{2}+i y_{2}\right)+i y_{1}\left(x_{2}+i y_{2}\right) \\
&=x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2} \\
&=x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2} \\
&=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
& \Rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2} \\
& \Rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}
\end{aligned}
\end{aligned}
$$

Hence, proved.

Question 3:

Reduce $\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$ to the standard form.
Answer

$$
\begin{aligned}
& \left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)=\left[\frac{(1+i)-2(1-4 i)}{(1-4 i)(1+i)}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left[\frac{3-4 i}{5+i}\right]=\left[\frac{-1+9 i}{5-3 i}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}\right]=\frac{33+31 i}{28-10 i}=\frac{33+31 i}{2(14-5 i)} \\
& =\frac{(33+31 i)}{2(14-5 i)} \times \frac{(14+5 i)}{(14+5 i)} \quad \quad[\text { On multiplying numerator and denominator by }(14+5 i)] \\
& =\frac{462+165 i+434 i+155 i^{2}}{2\left[(14)^{2}-(5 i)^{2}\right]}=\frac{307+599 i}{2\left(196-25 i^{2}\right)} \\
& =\frac{307+599 i}{2(221)}=\frac{307+599 i}{442}=\frac{307}{442}+\frac{599 i}{442}
\end{aligned}
$$

This is the required standard form.

Question 4:

If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$ prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.
Answer

$$
x-i y=\sqrt{\frac{a-i b}{c-i d}}
$$

$$
=\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}}[\text { On multiplying numerator and deno min ator by }(c+i d)]
$$

$$
=\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}
$$

$\therefore(\mathrm{x}-\mathrm{iy})^{2}=\frac{(\mathrm{ac}+\mathrm{bd})+\mathrm{i}(\mathrm{ad}-\mathrm{bc})}{\mathrm{c}^{2}+\mathrm{d}^{2}}$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}-2 \mathrm{ixy}=\frac{(\mathrm{ac}+\mathrm{bd})+\mathrm{i}(\mathrm{ad}-\mathrm{bc})}{\mathrm{c}^{2}+\mathrm{d}^{2}}$
On comparing real and imaginary parts, we obtain
$\mathrm{x}^{2}-\mathrm{y}^{2}=\frac{\mathrm{ac}+\mathrm{bd}}{\mathrm{c}^{2}+\mathrm{d}^{2}},-2 \mathrm{xy}=\frac{\mathrm{ad}-\mathrm{bc}}{\mathrm{c}^{2}+\mathrm{d}^{2}}$

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)^{2}+\left(\frac{a d-b c}{c^{2}+d^{2}}\right)^{2} \quad[U \operatorname{sing}(1)] \\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a d b c}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{\left(c^{2}+d^{2}\right)\left(a^{2}+b^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2}+b^{2}}{c^{2}+d^{2}}
\end{aligned}
$$

Hence, proved.

Question 5:

Convert the following in the polar form:
(i) $\frac{1+7 i}{(2-i)^{2}}$, (ii) $\frac{1+3 i}{1-2 i}$

Answer
(i) Here, $z=\frac{1+7 i}{(2-i)^{2}}$

$$
\begin{aligned}
& =\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i} \\
& =\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}} \\
& =\frac{3+4 i+21 i-28}{3^{2}+4^{2}}=\frac{-25+25 i}{25} \\
& =-1+i
\end{aligned}
$$

Let $r \cos \theta=-1$ and $r \sin \theta=1$

On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2$
$\Rightarrow r^{2}=2$

$$
\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]
$$

$\Rightarrow r=\sqrt{2} \quad[$ Conventionally, $r>0]$
$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
[As θ lies in II quadrant]
$\therefore z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
This is the required polar form.
(ii) Here, $z=\frac{1+3 i}{1-2 i}$
$=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i}$
$=\frac{1+2 i+3 i-6}{1+4}$
$=\frac{-5+5 i}{5}=-1+i$
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2$
$\Rightarrow r^{2}=2$ $\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{2} \quad[$ Conventionally, $r>0$]
$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in II quadrant $]$
$\therefore z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
This is the required polar form.

Question 6:

Solve the equation $3 x^{2}-4 x+\frac{20}{3}=0$
Answer
The given quadratic equation is $3 x^{2}-4 x+\frac{20}{3}=0$
This equation can also be written as $9 x^{2}-12 x+20=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=9, b=-12$, and $c=20$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(-12)^{2}-4 \times 9 \times 20=144-720=-576$
Therefore, the required solutions are

$$
\begin{array}{ll}
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-12) \pm \sqrt{-576}}{2 \times 9}=\frac{12 \pm \sqrt{576} i}{18} & {[\sqrt{-1}=i]} \\
=\frac{12 \pm 24 i}{18}=\frac{6(2 \pm 4 i)}{18}=\frac{2 \pm 4 i}{3}=\frac{2}{3} \pm \frac{4}{3} i &
\end{array}
$$

Question 7:

Solve the equation $x^{2}-2 x+\frac{3}{2}=0$
Answer

The given quadratic equation is $x^{2}-2 x+\frac{3}{2}=0$
This equation can also be written as $2 x^{2}-4 x+3=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain $a=2, b=-4$, and $c=3$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(-4)^{2}-4 \times 2 \times 3=16-24=-8$
Therefore, the required solutions are

$$
\begin{aligned}
& \frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-4) \pm \sqrt{-8}}{2 \times 2}=\frac{4 \pm 2 \sqrt{2} i}{4} \quad[\sqrt{-1}=i] \\
& =\frac{2 \pm \sqrt{2} i}{2}=1 \pm \frac{\sqrt{2}}{2} i
\end{aligned}
$$

Question 8:

Solve the equation $27 x^{2}-10 x+1=0$
Answer
The given quadratic equation is $27 x^{2}-10 x+1=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=27, b=-10$, and $c=1$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(-10)^{2}-4 \times 27 \times 1=100-108=-8$
Therefore, the required solutions are

$$
\begin{array}{ll}
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-10) \pm \sqrt{-8}}{2 \times 27}=\frac{10 \pm 2 \sqrt{2} i}{54} & {[\sqrt{-1}=i]} \\
=\frac{5 \pm \sqrt{2} i}{27}=\frac{5}{27} \pm \frac{\sqrt{2}}{27} i &
\end{array}
$$

Question 9:

Solve the equation $21 x^{2}-28 x+10=0$
Answer
The given quadratic equation is $21 x^{2}-28 x+10=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=21, b=-28$, and $c=10$
Therefore, the discriminant of the given equation is
$D=b^{2}-4 a c=(-28)^{2}-4 \times 21 \times 10=784-840=-56$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-28) \pm \sqrt{-56}}{2 \times 21}=\frac{28 \pm \sqrt{56} i}{42}$
$=\frac{28 \pm 2 \sqrt{14} i}{42}=\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i=\frac{2}{3} \pm \frac{\sqrt{14}}{21} i$

Question 10:

If $z_{1}=2-i, z_{2}=1+i$, find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$.
Answer

$$
\left.\begin{aligned}
& z_{1}=2-i, z_{2}=1+i \\
& \therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right| \\
& =\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right| \\
& =\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{1^{2}-i^{2}}\right| \\
& =\left|\frac{2(1+i)}{1+1}\right| \\
& =\left|\frac{2(1+i)}{2}\right| \\
& \left.=|1+i|=\sqrt{i^{2}}=-1\right] \\
& l^{2}+1^{2}
\end{aligned} \right\rvert\, \quad \sqrt{2} \quad l
$$

Thus, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$.

Question 11:

If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{(2 x+1)^{2}}$
Answer

$$
\begin{aligned}
a+i b & =\frac{(x+i)^{2}}{2 x^{2}+1} \\
& =\frac{x^{2}+i^{2}+2 x i}{2 x^{2}+1} \\
& =\frac{x^{2}-1+i 2 x}{2 x^{2}+1} \\
& =\frac{x^{2}-1}{2 x^{2}+1}+i\left(\frac{2 x}{2 x^{2}+1}\right)
\end{aligned}
$$

On comparing real and imaginary parts, we obtain
$a=\frac{x^{2}-1}{2 x^{2}+1}$ and $b=\frac{2 x}{2 x^{2}+1}$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}=\left(\frac{\mathrm{x}^{2}-1}{2 \mathrm{x}^{2}+1}\right)^{2}+\left(\frac{2 \mathrm{x}}{2 \mathrm{x}^{2}+1}\right)^{2}$
$=\frac{x^{4}+1-2 x^{2}+4 x^{2}}{(2 x+1)^{2}}$
$=\frac{x^{4}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}}$
$=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}=\frac{\left(\mathrm{x}^{2}+1\right)^{2}}{\left(2 \mathrm{x}^{2}+1\right)^{2}}$
Hence, proved.

Question 12:

Let $z_{1}=2-i, z_{2}=-2+i$. Find
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$, (ii) $\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)$

Answer

$$
z_{1}=2-i, z_{2}=-2+i
$$

(i) $\mathrm{z}_{1} \mathrm{z}_{2}=(2-\mathrm{i})(-2+\mathrm{i})=-4+2 \mathrm{i}+2 \mathrm{i}-\mathrm{i}^{2}=-4+4 \mathrm{i}-(-1)=-3+4 \mathrm{i}$
$\bar{z}_{1}=2+\mathrm{i}$
$\therefore \frac{\mathrm{z}_{1} \mathrm{z}_{2}}{\overline{\mathrm{z}}_{1}}=\frac{-3+4 \mathrm{i}}{2+\mathrm{i}}$
On multiplying numerator and denominator by $(2-i)$, we obtain

$$
\begin{aligned}
\frac{z_{1} z_{2}}{\bar{z}_{1}} & =\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{2^{2}+1^{2}} \\
& =\frac{-2+1 l i}{5}=\frac{-2}{5}+\frac{11}{5} i
\end{aligned}
$$

On comparing real parts, we obtain
$\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)=\frac{-2}{5}$
(ii) $\frac{1}{\mathrm{Z}_{1} \overline{\mathrm{Z}}_{1}}=\frac{1}{(2-\mathrm{i})(2+\mathrm{i})}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5}$

On comparing imaginary parts, we obtain
$\operatorname{Im}\left(\frac{1}{z_{1} \overline{\mathrm{z}}_{1}}\right)=0$

Question 13:

Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$.
Answer
Let $z=\frac{1+2 i}{1-3 i}$, then

$$
\begin{aligned}
z & =\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9} \\
& =\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i
\end{aligned}
$$

Let $z=r \cos \theta+i r \sin \theta$
i.e., $r \cos \theta=\frac{-1}{2}$ and $r \sin \theta=\frac{1}{2}$

On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$
$\Rightarrow r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$\Rightarrow r=\frac{1}{\sqrt{2}} \quad[$ Conventionally, $r>0$]
$\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2}$ and $\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in the II quadrant]
Therefore, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3 \pi}{4}$ respectively.

Question 14:

Find the real numbers x and y if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$.
Answer
Let $z=(x-i y)(3+5 i)$
$z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+i(5 x-3 y)$
$\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)$
It is given that, $\bar{z}=-6-24 i$
$\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i$
Equating real and imaginary parts, we obtain

$$
\begin{align*}
& 3 x+5 y=-6 \tag{i}\\
& 5 x-3 y=24 \tag{ii}
\end{align*}
$$

Multiplying equation (i) by 3 and equation (ii) by 5 and then adding them, we obtain

$$
\begin{aligned}
9 x+15 y & =-18 \\
25 x-15 y & =120 \\
\hline 34 x & =102 \\
\therefore x=\frac{102}{34} & =3
\end{aligned}
$$

Putting the value of x in equation (i), we obtain

$$
\begin{aligned}
& 3(3)+5 y=-6 \\
& \Rightarrow 5 y=-6-9=-15 \\
& \Rightarrow y=-3
\end{aligned}
$$

Thus, the values of x and y are 3 and -3 respectively.

Question 15:

Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$.
Answer

$$
\left.\begin{array}{rl}
\frac{1+i}{1-i}-\frac{1-i}{1+i} & =\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)} \\
& =\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}+1^{2}} \\
& =\frac{4 i}{2}=2 i
\end{array}\right\}\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=|2 i|=\sqrt{2^{2}}=2
$$

Question 16:

If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$.
Answer
$(x+i y)^{3}=u+i v$
$\Rightarrow x^{3}+(i y)^{3}+3 \cdot x \cdot i y(x+i y)=u+i v$
$\Rightarrow x^{3}+i^{3} y^{3}+3 x^{2} y i+3 x y^{2} i^{2}=u+i v$
$\Rightarrow x^{3}-i y^{3}+3 x^{2} y i-3 x y^{2}=u+i v$
$\Rightarrow\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v$
On equating real and imaginary parts, we obtain

$$
\begin{aligned}
& u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3} \\
& \begin{aligned}
\therefore \frac{u}{x}+\frac{v}{y} & =\frac{x^{3}-3 x y^{2}}{x}+\frac{3 x^{2} y-y^{3}}{y} \\
& =\frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2}-y^{2}\right)}{y} \\
& =x^{2}-3 y^{2}+3 x^{2}-y^{2} \\
& =4 x^{2}-4 y^{2} \\
& =4\left(x^{2}-y^{2}\right)
\end{aligned} \\
& \therefore \frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Hence, proved.
Question 17:
If a and β are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$.
Answer
Let $a=a+i b$ and $\beta=x+i y$
It is given that, $|\beta|=1$
$\therefore \sqrt{x^{2}+y^{2}}=1$
$\Rightarrow x^{2}+y^{2}=1$

$$
\begin{aligned}
\begin{aligned}
&\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right| \\
&=\left|\frac{(x-a)+i(y-b)}{1-(a x+a i y-i b x+b y)}\right| \\
&=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right| \\
&=\frac{|(x-a)+i(y-b)|}{|(1-a x-b y)+i(b x-a y)|} \quad\left[\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\right] \\
&=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}} \\
&=\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}} \\
&=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}} \\
&=\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}} \\
&=1 \\
& \therefore \left\lvert\, \frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right.=1
\end{aligned}
\end{aligned}
$$

Question 18:

Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$. Answer

$$
\begin{aligned}
& |1-i|^{x}=2^{x} \\
& \Rightarrow\left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x} \\
& \Rightarrow(\sqrt{2})^{x}=2^{x} \\
& \Rightarrow 2^{\frac{x}{2}}=2^{x} \\
& \Rightarrow \frac{x}{2}=x \\
& \Rightarrow x=2 x \\
& \Rightarrow 2 x-x=0 \\
& \Rightarrow x=0
\end{aligned}
$$

Thus, 0 is the only integral solution of the given equation. Therefore, the number of nonzero integral solutions of the given equation is 0 .

Question 19:

If $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$, then show that
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$.
Answer

$$
\begin{aligned}
& (a+i b)(c+i d)(e+i f)(g+i h)=\mathrm{A}+i \mathrm{~B} \\
& \therefore|(a+i b)(c+i d)(e+i f)(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \\
& \Rightarrow|(a+i b)| \times|(c+i d)| \times|(e+i f)| \times|(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \quad\left[\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right] \\
& \Rightarrow \sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}
\end{aligned}
$$

On squaring both sides, we obtain
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=\mathrm{A}^{2}+\mathrm{B}^{2}$
Hence, proved.

Question 20:

If $\left(\frac{1+i}{1-i}\right)^{m}=1$, then find the least positive integral value of m.
Answer
$\left(\frac{1+i}{1-i}\right)^{m}=1$
$\Rightarrow\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}=1$
$\Rightarrow\left(\frac{(1+i)^{2}}{1^{2}+1^{2}}\right)^{m}=1$
$\Rightarrow\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{m}=1$
$\Rightarrow\left(\frac{1-1+2 i}{2}\right)^{m}=1$
$\Rightarrow\left(\frac{2 i}{2}\right)^{m}=1$
$\Rightarrow i^{\prime \prime \prime}=1$
$\therefore m=4 k$, where k is some integer.
Therefore, the least positive integer is 1 .
Thus, the least positive integral value of m is $4(=4 \times 1)$.

