Exercise 5.8

Question 1:

Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$
Answer
The given function, $f(x)=x^{2}+2 x-8$, being a polynomial function, is continuous in [-4 , $2]$ and is differentiable in $(-4,2)$.
$f(-4)=(-4)^{2}+2 \times(-4)-8=16-8-8=0$
$f(2)=(2)^{2}+2 \times 2-8=4+4-8=0$
$\therefore f(-4)=f(2)=0$
\Rightarrow The value of $f(x)$ at -4 and 2 coincides.

Rolle's Theorem states that there is a point $c \in(-4,2)$ such that $f^{\prime}(c)=0$
$f(x)=x^{2}+2 x-8$
$\Rightarrow f^{\prime}(x)=2 x+2$
$\therefore f^{\prime}(c)=0$
$\Rightarrow 2 c+2=0$
$\Rightarrow c=-1$, where $c=-1 \in(-4,2)$
Hence, Rolle's Theorem is verified for the given function.

Question 2:

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's Theorem from these examples?
(i) $f(x)=[x]$ for $x \in[5,9]$
(ii) $f(x)=[x]$ for $x \in[-2,2]$
(iii) $f(x)=x^{2}-1$ for $x \in[1,2]$

Answer
By Rolle's Theorem, for a function $f:[a, \mathrm{~b}] \rightarrow \mathbf{R}$, if
(a) f is continuous on $[a, b]$
(b) f is differentiable on (a, b)
(c) $f(a)=f(b)$
then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
(i) $f(x)=[x]$ for $x \in[5,9]$

It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=5$ and $x=9$
$\Rightarrow f(x)$ is not continuous in $[5,9]$.

Also, $f(5)=[5]=5$ and $f(9)=[9]=9$
$\therefore f(5) \neq f(9)$
The differentiability of f in $(5,9)$ is checked as follows.

Let n be an integer such that $n \in(5,9)$.

The left hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{-}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{-}} \frac{n-1-n}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1}{h}=\infty$
The right hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{+}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{+}} \frac{n-n}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=n$ are not equal, f is not differentiable at x $=n$
$\therefore f$ is not differentiable in $(5,9)$.

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9]$.
(ii) $f(x)=[x]$ for $x \in[-2,2]$

It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$
$\Rightarrow f(x)$ is not continuous in $[-2,2]$.

Also, $f(-2)=[-2]=-2$ and $f(2)=[2]=2$
$\therefore f(-2) \neq f(2)$
The differentiability of f in $(-2,2)$ is checked as follows.

Let n be an integer such that $n \in(-2,2)$.

The left hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{-}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{-}} \frac{n-1-n}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1}{h}=\infty$
The right hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{+}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{+}} \frac{n-n}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=n$ are not equal, f is not differentiable at x $=n$
$\therefore f$ is not differentiable in $(-2,2)$.

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$.
(iii) $f(x)=x^{2}-1$ for $x \in[1,2]$

It is evident that f, being a polynomial function, is continuous in [1, 2] and is differentiable in $(1,2)$.
$f(1)=(1)^{2}-1=0$
$f(2)=(2)^{2}-1=3$
$\therefore f(1) \neq f(2)$

It is observed that f does not satisfy a condition of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=x^{2}-1$ for $x \in[1,2]$.

Question 3:

If $f:[-5,5] \rightarrow \mathbf{R}$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5)$.
Answer
It is given that $f:[-5,5] \rightarrow \mathbf{R}$ is a differentiable function.
Since every differentiable function is a continuous function, we obtain
(a) f is continuous on $[-5,5]$.
(b) f is differentiable on $(-5,5)$.

Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that
$f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}$
$\Rightarrow 10 f^{\prime}(c)=f(5)-f(-5)$
It is also given that $f^{\prime}(x)$ does not vanish anywhere.
$\therefore f^{\prime}(c) \neq 0$
$\Rightarrow 10 f^{\prime}(c) \neq 0$
$\Rightarrow f(5)-f(-5) \neq 0$
$\Rightarrow f(5) \neq f(-5)$
Hence, proved.

Question 4:

Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b]$, where $a=1$ and $b=4$.

Answer
The given function is $f(x)=x^{2}-4 x-3$
f, being a polynomial function, is continuous in $[1,4]$ and is differentiable in $(1,4)$ whose derivative is $2 x-4$.
$f(1)=1^{2}-4 \times 1-3=-6, f(4)=4^{2}-4 \times 4-3=-3$
$\therefore \frac{f(b)-f(a)}{b-a}=\frac{f(4)-f(1)}{4-1}=\frac{-3-(-6)}{3}=\frac{3}{3}=1$

Mean Value Theorem states that there is a point $c \in(1,4)$ such that $f^{\prime}(c)=1$
$f^{\prime}(c)=1$
$\Rightarrow 2 c-4=1$
$\Rightarrow c=\frac{5}{2}$, where $c=\frac{5}{2} \in(1,4)$
Hence, Mean Value Theorem is verified for the given function.

Question 5:

Verify Mean Value Theorem, if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval $[a, b]$, where $a=1$ and $b=3$. Find all $c \in(1,3)$ for which $f^{\prime}(c)=0$
Answer
The given function f is $f(x)=x^{3}-5 x^{2}-3 x$
f, being a polynomial function, is continuous in $[1,3]$ and is differentiable in $(1,3)$
whose derivative is $3 x^{2}-10 x-3$.

$$
\begin{aligned}
& f(1)=1^{3}-5 \times 1^{2}-3 \times 1=-7, f(3)=3^{3}-5 \times 3^{2}-3 \times 3=-27 \\
& \therefore \frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(1)}{3-1}=\frac{-27-(-7)}{3-1}=-10
\end{aligned}
$$

Mean Value Theorem states that there exist a point $c \in(1,3)$ such that $f^{\prime}(c)=-10$

$$
\begin{aligned}
& f^{\prime}(c)=-10 \\
& \Rightarrow 3 c^{2}-10 c-3=10 \\
& \Rightarrow 3 c^{2}-10 c+7=0 \\
& \Rightarrow 3 c^{2}-3 c-7 c+7=0 \\
& \Rightarrow 3 c(c-1)-7(c-1)=0 \\
& \Rightarrow(c-1)(3 c-7)=0 \\
& \Rightarrow c=1, \frac{7}{3}, \text { where } c=\frac{7}{3} \in(1,3)
\end{aligned}
$$

Hence, Mean Value Theorem is verified for the given function and $c=\frac{7}{3} \in(1,3)$ is the only point for which $f^{\prime}(c)=0$

Question 6:

Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.
Answer
Mean Value Theorem states that for a function $f:[a, \mathrm{~b}] \rightarrow \mathbf{R}$, if
(a) f is continuous on $[a, b]$
(b) f is differentiable on (a, b)
then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy any of the two conditions of the hypothesis.
(i) $f(x)=[x]$ for $x \in[5,9]$

It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=5$ and $x=9$
$\Rightarrow f(x)$ is not continuous in $[5,9]$.

The differentiability of f in $(5,9)$ is checked as follows.

Let n be an integer such that $n \in(5,9)$.

The left hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{-}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{-}} \frac{n-1-n}{h}=\lim _{h \rightarrow 0} \frac{-1}{h}=\infty$
The right hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{+}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{+}} \frac{n-n}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=n$ are not equal, f is not differentiable at x $=n$
$\therefore f$ is not differentiable in $(5,9)$.

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9]$.
(ii) $f(x)=[x]$ for $x \in[-2,2]$

It is evident that the given function $f(x)$ is not continuous at every integral point.

In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$
$\Rightarrow f(x)$ is not continuous in $[-2,2]$.

The differentiability of f in $(-2,2)$ is checked as follows.

Let n be an integer such that $n \in(-2,2)$.

The left hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{-}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{-}} \frac{n-1-n}{h}=\lim _{h \rightarrow 0} \frac{-1}{h}=\infty$
The right hand limit of f at $x=n$ is,
$\lim _{h \rightarrow 0^{+}} \frac{f(n+h)-f(n)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[n+h]-[n]}{h}=\lim _{h \rightarrow 0^{+}} \frac{n-n}{h}=\lim _{h \rightarrow 0^{+}} 0=0$
Since the left and right hand limits of f at $x=n$ are not equal, f is not differentiable at x $=n$
$\therefore f$ is not differentiable in $(-2,2)$.

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$.
(iii) $f(x)=x^{2}-1$ for $x \in[1,2]$

It is evident that f, being a polynomial function, is continuous in [1,2] and is differentiable in $(1,2)$.

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is applicable for $f(x)=x^{2}-1$ for $x \in[1,2]$.
It can be proved as follows.
$f(1)=1^{2}-1=0, f(2)=2^{2}-1=3$
$\therefore \frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(1)}{2-1}=\frac{3-0}{1}=3$
$f^{\prime}(x)=2 x$
$\therefore f^{\prime}(c)=3$
$\Rightarrow 2 c=3$
$\Rightarrow c=\frac{3}{2}=1.5$, where $1.5 \in[1,2]$

