Exercise 6.4

Question 1:

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal
(i) $\sqrt{25.3}$ (ii) $\sqrt{49.5}$ (iii) $\sqrt{0.6}$
(iv) $(0.009)^{\frac{1}{3}}$ (v) $(0.999)^{\frac{1}{10}}$ (vi) $(15)^{\frac{1}{4}}$
(vii) $(26)^{\frac{1}{3}}$ (viii) ${ }^{(255)^{\frac{1}{4}}}$ (ix) $(82)^{\frac{1}{4}}$
(x) ${ }^{(401)^{\frac{1}{2}}}$ (xi) $(0.0037)^{\frac{1}{2}}$ (xii) $(26.57)^{\frac{1}{3}}$
(xiii) ${ }^{(81.5)^{\frac{1}{4}}}$ (xiv) $(3.968)^{\frac{3}{2}}$ (xv) $(32.15)^{\frac{1}{5}}$

Answer
(i) $\sqrt{25.3}$

Consider $y=\sqrt{x}$. Let $x=25$ and $\Delta x=0.3$.
Then,
$\Delta y=\sqrt{x+\Delta x}-\sqrt{x}=\sqrt{25.3}-\sqrt{25}=\sqrt{25.3}-5$
$\Rightarrow \sqrt{25.3}=\Delta y+5$
Now, $d y$ is approximately equal to Δy and is given by,
$d y=\left(\frac{d y}{d x}\right) \Delta x=\frac{1}{2 \sqrt{x}}(0.3) \quad[$ as $y=\sqrt{x}]$
$=\frac{1}{2 \sqrt{25}}(0.3)=0.03$
Hence, the approximate value of $\sqrt{25.3}$ is $0.03+5=5.03$.
(ii) $\sqrt{49.5}$

Consider $y=\sqrt{x}$. Let $x=49$ and $\Delta x=0.5$.
Then,
$\Delta y=\sqrt{x+\Delta x}-\sqrt{x}=\sqrt{49.5}-\sqrt{49}=\sqrt{49.5}-7$
$\Rightarrow \sqrt{49.5}=7+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{array}{rlr}
d y & =\left(\frac{d y}{d x}\right) \Delta x=\frac{1}{2 \sqrt{x}}(0.5) & {[\text { as } y=\sqrt{x}]} \\
& =\frac{1}{2 \sqrt{49}}(0.5)=\frac{1}{14}(0.5)=0.035 &
\end{array}
$$

Hence, the approximate value of $\sqrt{49.5}$ is $7+0.035=7.035$.
(iii) $\sqrt{0.6}$

Consider $y=\sqrt{x}$. Let $x=1$ and $\Delta x=-0.4$.
Then,
$\Delta y=\sqrt{x+\Delta x}-\sqrt{x}=\sqrt{0.6}-1$
$\Rightarrow \sqrt{0.6}=1+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{array}{rlr}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{2 \sqrt{x}}(\Delta x) & {[\text { as } y=\sqrt{x}]} \\
& =\frac{1}{2}(-0.4)=-0.2 &
\end{array}
$$

Hence, the approximate value of $\sqrt{0.6}$ is $1+(-0.2)=1-0.2=0.8$.
(iv) $(0.009)^{\frac{1}{3}}$

Consider $y=x^{\frac{1}{3}}$. Let $x=0.008$ and $\Delta x=0.001$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{3}}-(x)^{\frac{1}{3}}=(0.009)^{\frac{1}{3}}-(0.008)^{\frac{1}{3}}=(0.009)^{\frac{1}{3}}-0.2$
$\Rightarrow(0.009)^{\frac{1}{3}}=0.2+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{3(x)^{\frac{2}{3}}}(\Delta x) \quad\left[\text { as } y=x^{\frac{1}{3}}\right] \\
& =\frac{1}{3 \times 0.04}(0.001)=\frac{0.001}{0.12}=0.008
\end{aligned}
$$

Hence, the approximate value of $(0.009)^{\frac{1}{3}}$ is $0.2+0.008=0.208$.
(v) $(0.999)^{\frac{1}{10}}$

Consider ${ }^{y=(x)^{\frac{1}{10}}}$. Let $x=1$ and $\Delta x=-0.001$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{10}}-(x)^{\frac{1}{10}}=(0.999)^{\frac{1}{10}}-1$
$\Rightarrow(0.999)^{\frac{1}{10}}=1+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{10(x)^{\frac{9}{10}}}(\Delta x) \quad\left[\text { as } y=(x)^{\frac{1}{10}}\right] \\
& =\frac{1}{10}(-0.001)=-0.0001
\end{aligned}
$$

Hence, the approximate value of $(0.999)^{\frac{1}{10}}$ is $1+(-0.0001)=0.9999$.
(vi) $(15)^{\frac{1}{4}}$

Consider $y=x^{\frac{1}{4}}$. Let $x=16$ and $\Delta x=-1$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{4}}-x^{\frac{1}{4}}=(15)^{\frac{1}{4}}-(16)^{\frac{1}{4}}=(15)^{\frac{1}{4}}-2$
$\Rightarrow(15)^{\frac{1}{4}}=2+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{4(x)^{\frac{3}{4}}}(\Delta x) \quad\left[\text { as } y=x^{\frac{1}{4}}\right] \\
& =\frac{1}{4(16)^{\frac{3}{4}}}(-1)=\frac{-1}{4 \times 8}=\frac{-1}{32}=-0.03125
\end{aligned}
$$

Hence, the approximate value of $(15)^{\frac{1}{4}}$ is $2+(-0.03125)=1.96875$.
(vii) $(26)^{\frac{1}{3}}$

Consider $y=(x)^{\frac{1}{3}}$. Let $x=27$ and $\Delta x=-1$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{3}}-(x)^{\frac{1}{3}}=(26)^{\frac{1}{3}}-(27)^{\frac{1}{3}}=(26)^{\frac{1}{3}}-3$
$\Rightarrow(26)^{\frac{1}{3}}=3+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x= & \frac{1}{3(x)^{\frac{2}{3}}}(\Delta x) \quad\left[\text { as } y=(x)^{\frac{1}{3}}\right] \\
& =\frac{1}{3(27)^{\frac{2}{3}}}(-1)=\frac{-1}{27}=-0.0 \overline{370}
\end{aligned}
$$

Hence, the approximate value of $(26)^{\frac{1}{3}}$ is $3+(-0.0370)=2.9629$.
(viii) $(255)^{\frac{1}{4}}$

Consider ${ }^{y=(x)^{\frac{1}{4}}}$. Let $x=256$ and $\Delta x=-1$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{4}}-(x)^{\frac{1}{4}}=(255)^{\frac{1}{4}}-(256)^{\frac{1}{4}}=(255)^{\frac{1}{4}}-4$
$\Rightarrow(255)^{\frac{1}{4}}=4+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{4(x)^{\frac{3}{4}}}(\Delta x) \quad\left[\text { as } y=x^{\frac{1}{4}}\right] \\
& =\frac{1}{4(256)^{\frac{3}{4}}}(-1)=\frac{-1}{4 \times 4^{3}}=-0.0039
\end{aligned}
$$

Hence, the approximate value of $(255)^{\frac{1}{4}}$ is $4+(-0.0039)=3.9961$.
(ix) $(82)^{\frac{1}{4}}$

Consider $y=x^{\frac{1}{4}}$. Let $x=81$ and $\Delta x=1$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{4}}-(x)^{\frac{1}{4}}=(82)^{\frac{1}{4}}-(81)^{\frac{1}{4}}=(82)^{\frac{1}{4}}-3$
$\Rightarrow(82)^{\frac{1}{4}}=\Delta y+3$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{4(x)^{\frac{3}{4}}}(\Delta x) \\
& =\frac{1}{4(81)^{\frac{3}{4}}}(1)=\frac{1}{4(3)^{3}}=\frac{1}{108}=0.009
\end{aligned}
$$

Hence, the approximate value of $(82)^{\frac{1}{4}}$ is $3+0.009=3.009$.
$(x)^{(401)^{\frac{1}{2}}}$
Consider $y=x^{\frac{1}{2}}$. Let $x=400$ and $\Delta x=1$.
Then,
$\Delta y=\sqrt{x+\Delta x}-\sqrt{x}=\sqrt{401}-\sqrt{400}=\sqrt{401}-20$
$\Rightarrow \sqrt{401}=20+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{2 \sqrt{x}}(\Delta x) \quad\left[\text { as } y=x^{\frac{1}{2}}\right] \\
& =\frac{1}{2 \times 20}(1)=\frac{1}{40}=0.025
\end{aligned}
$$

Hence, the approximate value of $\sqrt{401}$ is $20+0.025=20.025$.
(xi) $(0.0037)^{\frac{1}{2}}$

Consider $y=x^{\frac{1}{2}}$. Let $x=0.0036$ and $\Delta x=0.0001$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{2}}-(x)^{\frac{1}{2}}=(0.0037)^{\frac{1}{2}}-(0.0036)^{\frac{1}{2}}=(0.0037)^{\frac{1}{2}}-0.06$
$\Rightarrow(0.0037)^{\frac{1}{2}}=0.06+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{array}{rlr}
d y & =\left(\frac{d y}{d x}\right) \Delta x=\frac{1}{2 \sqrt{x}}(\Delta x) \quad\left[\text { as } y=x^{\frac{1}{2}}\right] \\
& =\frac{1}{2 \times 0.06}(0.0001) \\
& =\frac{0.0001}{0.12}=0.00083
\end{array}
$$

Thus, the approximate value of ${ }^{(0.0037)^{\frac{1}{2}}}$ is $0.06+0.00083=0.06083$.
(xii) $(26.57)^{\frac{1}{3}}$

Consider $y=x^{\frac{1}{3}}$. Let $x=27$ and $\Delta x=-0.43$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{3}}-x^{\frac{1}{3}}=(26.57)^{\frac{1}{3}}-(27)^{\frac{1}{3}}=(26.57)^{\frac{1}{3}}-3$
$\Rightarrow(26.57)^{\frac{1}{3}}=3+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{3(x)^{\frac{2}{3}}}(\Delta x) \quad\left[\text { as } y=x^{\frac{1}{3}}\right] \\
& =\frac{1}{3(9)}(-0.43) \\
& =\frac{-0.43}{27}=-0.015
\end{aligned}
$$

Hence, the approximate value of $(26.57)^{\frac{1}{3}}$ is $3+(-0.015)=2.984$.
(xiii) $(81.5)^{\frac{1}{4}}$

Consider $y=x^{\frac{1}{4}}$. Let $x=81$ and $\Delta x=0.5$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{4}}-(x)^{\frac{1}{4}}=(81.5)^{\frac{1}{4}}-(81)^{\frac{1}{4}}=(81.5)^{\frac{1}{4}}-3$
$\Rightarrow(81.5)^{\frac{1}{4}}=3+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{4(x)^{\frac{3}{4}}}(\Delta x) \quad\left[\text { as } y=x^{\frac{1}{4}}\right] \\
& =\frac{1}{4(3)^{3}}(0.5)=\frac{0.5}{108}=0.0046
\end{aligned}
$$

Hence, the approximate value of $(81.5)^{\frac{1}{4}}$ is $3+0.0046=3.0046$.
$(x i v)^{(3.968)^{\frac{3}{2}}}$
Consider $y=x^{\frac{3}{2}}$. Let $x=4$ and $\Delta x=-0.032$.
Then,
$\Delta y=(x+\Delta x)^{\frac{3}{2}}-x^{\frac{3}{2}}=(3.968)^{\frac{3}{2}}-(4)^{\frac{3}{2}}=(3.968)^{\frac{3}{2}}-8$
$\Rightarrow(3.968)^{\frac{3}{2}}=8+\Delta y$

Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{aligned}
d y & =\left(\frac{d y}{d x}\right) \Delta x=\frac{3}{2}(x)^{\frac{1}{2}}(\Delta x) \quad\left[\text { as } y=x^{\frac{3}{2}}\right] \\
& =\frac{3}{2}(2)(-0.032) \\
& =-0.096
\end{aligned}
$$

Hence, the approximate value of $(3.968)^{\frac{3}{2}}$ is $8+(-0.096)=7.904$.
$(x v)^{(32.15)^{\frac{1}{5}}}$
Consider $y=x^{\frac{1}{5}}$. Let $x=32$ and $\Delta x=0.15$.
Then,
$\Delta y=(x+\Delta x)^{\frac{1}{5}}-x^{\frac{1}{5}}=(32.15)^{\frac{1}{5}}-(32)^{\frac{1}{5}}=(32.15)^{\frac{1}{5}}-2$
$\Rightarrow(32.15)^{\frac{1}{5}}=2+\Delta y$
Now, $d y$ is approximately equal to Δy and is given by,

$$
\begin{array}{rlr}
d y=\left(\frac{d y}{d x}\right) \Delta x & =\frac{1}{5(x)^{\frac{4}{5}}} \cdot(\Delta x) & {\left[\text { as } y=x^{\frac{1}{5}}\right]} \\
& =\frac{1}{5 \times(2)^{4}}(0.15) \\
& =\frac{0.15}{80}=0.00187
\end{array}
$$

Hence, the approximate value of $(32.15)^{\frac{1}{5}}$ is $2+0.00187=2.00187$.

Question 2:

Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$
Answer
Let $x=2$ and $\Delta x=0.01$. Then, we have:
$f(2.01)=f(x+\Delta x)=4(x+\Delta x)^{2}+5(x+\Delta x)+2$
Now, $\Delta y=f(x+\Delta x)-f(x)$
$\square f(x+\Delta x)=f(x)+\Delta y$
$\approx f(x)+f^{\prime}(x) \cdot \Delta x \quad($ as $d x=\Delta x)$
$\Rightarrow f(2.01) \approx\left(4 x^{2}+5 x+2\right)+(8 x+5) \Delta x$
$=\left[4(2)^{2}+5(2)+2\right]+[8(2)+5](0.01) \quad[$ as $x=2, \Delta x=0.01]$
$=(16+10+2)+(16+5)(0.01)$
$=28+(21)(0.01)$
$=28+0.21$
$=28.21$
Hence, the approximate value of $f(2.01)$ is 28.21 .

Question 3:

Find the approximate value of $f(5.001)$, where $f(x)=x^{3}-7 x^{2}+15$.
Answer
Let $x=5$ and $\Delta x=0.001$. Then, we have:
$f(5.001)=f(x+\Delta x)=(x+\Delta x)^{3}-7(x+\Delta x)^{2}+15$
Now, $\Delta y=f(x+\Delta x)-f(x)$

$$
\begin{aligned}
\therefore f(x+\Delta x) & =f(x)+\Delta y \\
& \approx f(x)+f^{\prime}(x) \cdot \Delta x \quad(\text { as } d x=\Delta x) \\
\Rightarrow f(5.001) & \approx\left(x^{3}-7 x^{2}+15\right)+\left(3 x^{2}-14 x\right) \Delta x \\
& =\left[(5)^{3}-7(5)^{2}+15\right]+\left[3(5)^{2}-14(5)\right](0.001) \quad[x=5, \Delta x=0.001] \\
& =(125-175+15)+(75-70)(0.001) \\
& =-35+(5)(0.001) \\
& =-35+0.005 \\
& =-34.995
\end{aligned}
$$

Hence, the approximate value of $f(5.001)$ is -34.995 .

Question 4:

Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.

Answer
The volume of a cube (V) of side x is given by $V=x^{3}$.

$$
\begin{array}{rlr}
\therefore d V & =\left(\frac{d V}{d x}\right) \Delta x & \\
& =\left(3 x^{2}\right) \Delta x & \\
& =\left(3 x^{2}\right)(0.01 x) & \text { [as } 1 \% \text { of } x \text { is } 0.01 x] \\
& =0.03 x^{3} &
\end{array}
$$

Hence, the approximate change in the volume of the cube is $0.03 x^{3} \mathrm{~m}^{3}$.

Question 5:

Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%

Answer
The surface area of a cube (S) of side x is given by $S=6 x^{2}$.

$$
\begin{array}{rlr}
\therefore \frac{d S}{d x} & =\left(\frac{d S}{d x}\right) \Delta x & \\
& =(12 x) \Delta x \\
& =(12 x)(0.01 x) \quad \text { [as } 1 \% \text { of } x \text { is } 0.01 x] \\
& =0.12 x^{2}
\end{array}
$$

Hence, the approximate change in the surface area of the cube is $0.12 x^{2} \mathrm{~m}^{2}$.

Question 6:

If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume.
Answer
Let r be the radius of the sphere and Δr be the error in measuring the radius.
Then,
$r=7 \mathrm{~m}$ and $\Delta r=0.02 \mathrm{~m}$
Now, the volume V of the sphere is given by,

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& \begin{aligned}
\therefore \frac{d V}{d r} & =4 \pi r^{2} \\
\therefore d V & =\left(\frac{d V}{d r}\right) \Delta r \\
& =\left(4 \pi r^{2}\right) \Delta r \\
& =4 \pi(7)^{2}(0.02) \mathrm{m}^{3}=3.92 \pi \mathrm{~m}^{3}
\end{aligned}
\end{aligned}
$$

Hence, the approximate error in calculating the volume is $3.92 \pi \mathrm{~m}^{3}$.

Question 7:

If the radius of a sphere is measured as 9 m with an error of 0.03 m , then find the approximate error in calculating in surface area.
Answer
Let r be the radius of the sphere and Δr be the error in measuring the radius.
Then,
$r=9 \mathrm{~m}$ and $\Delta r=0.03 \mathrm{~m}$
Now, the surface area of the sphere (S) is given by,
$S=4 \pi r^{2}$
$\therefore \frac{d S}{d r}=8 \pi r$
$\therefore d S=\left(\frac{d S}{d r}\right) \Delta r$
$=(8 \pi r) \Delta r$
$=8 \pi(9)(0.03) \mathrm{m}^{2}$
$=2.16 \pi \mathrm{~m}^{2}$
Hence, the approximate error in calculating the surface area is $2.16 \pi \mathrm{~m}^{2}$.

Question 8:
If $f(x)=3 x^{2}+15 x+5$, then the approximate value of $f(3.02)$ is
A. 47.66 B. 57.66 C. 67.66 D. 77.66

Answer

Let $x=3$ and $\Delta x=0.02$. Then, we have:
$f(3.02)=f(x+\Delta x)=3(x+\Delta x)^{2}+15(x+\Delta x)+5$
Now, $\Delta y=f(x+\Delta x)-f(x)$
$\Rightarrow f(x+\Delta x)=f(x)+\Delta y$

$$
\approx f(x)+f^{\prime}(x) \Delta x \quad(\text { As } d x=\Delta x)
$$

$\Rightarrow f(3.02) \approx\left(3 x^{2}+15 x+5\right)+(6 x+15) \Delta x$ $=\left[3(3)^{2}+15(3)+5\right]+[6(3)+15](0.02) \quad[$ As $x=3, \Delta x=0.02]$
$=(27+45+5)+(18+15)(0.02)$
$=77+(33)(0.02)$
$=77+0.66$
$=77.66$
Hence, the approximate value of $f(3.02)$ is 77.66 .
The correct answer is D.

Question 9:

The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. $0.06 x^{3} \mathrm{~m}^{3}$
B. $0.6 x^{3} \mathrm{~m}^{3}$
C. $0.09 x^{3} \mathrm{~m}^{3}$
D. $0.9 x^{3} \mathrm{~m}^{3}$

Answer
The volume of a cube (V) of side x is given by $V=x^{3}$.

$$
\begin{array}{rlr}
\therefore d V & =\left(\frac{d V}{d x}\right) \Delta x & \\
& =\left(3 x^{2}\right) \Delta x \\
& =\left(3 x^{2}\right)(0.03 x) & \\
& =0.09 x^{3} \mathrm{~m}^{3} & \text { [As } 3 \% \text { of } x \text { is } 0.03 x]
\end{array}
$$

Hence, the approximate change in the volume of the cube is $0.09 x^{3} \mathrm{~m}^{3}$.
The correct answer is C.

