Exercise 6.4

Question 1:

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal

(i)
$$\sqrt{25.3}$$
 (ii) $\sqrt{49.5}$ (iii) $\sqrt{0.6}$

(iv)
$$(0.009)^{\frac{1}{3}}$$
 (v) $(0.999)^{\frac{1}{10}}$ (vi) $(15)^{\frac{1}{4}}$

(vii)
$$(26)^{\frac{1}{3}}$$
 (viii) $(255)^{\frac{1}{4}}$ (ix) $(82)^{\frac{1}{4}}$

(x)
$$(401)^{\frac{1}{2}}$$
 (xi) $(0.0037)^{\frac{1}{2}}$ (xii) $(26.57)^{\frac{1}{3}}$

(xiii)
$$(81.5)^{\frac{1}{4}}$$
 (xiv) $(3.968)^{\frac{3}{2}}$ (xv) $(32.15)^{\frac{1}{5}}$

Answer

(i)
$$\sqrt{25.3}$$

Consider $y = \sqrt{x}$. Let x = 25 and $\Delta x = 0.3$.

Then,

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{25.3} - \sqrt{25} = \sqrt{25.3} - 5$$
$$\Rightarrow \sqrt{25.3} = \Delta y + 5$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} (0.3)$$

as
$$y = \sqrt{x}$$

$$=\frac{1}{2\sqrt{25}}(0.3)=0.03$$

Hence, the approximate value of $\sqrt{25.3}$ is 0.03 + 5 = 5.03.

(ii)
$$\sqrt{49.5}$$

Consider
$$y = \sqrt{x}$$
. Let $x = 49$ and $\Delta x = 0.5$.

Then,

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{49.5} - \sqrt{49} = \sqrt{49.5} - 7$$
$$\Rightarrow \sqrt{49.5} = 7 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} (0.5)$$
 [as $y = \sqrt{x}$]
= $\frac{1}{2\sqrt{49}} (0.5) = \frac{1}{14} (0.5) = 0.035$

Hence, the approximate value of $\sqrt{49.5}$ is 7 + 0.035 = 7.035.

Consider $y = \sqrt{x}$. Let x = 1 and $\Delta x = -0.4$.

Then,

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{0.6} - 1$$
$$\Rightarrow \sqrt{0.6} = 1 + \Delta v$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} (\Delta x)$$

$$= \frac{1}{2} (-0.4) = -0.2$$
[as $y = \sqrt{x}$]

Hence, the approximate value of $\sqrt{0.6}$ is 1 + (-0.2) = 1 - 0.2 = 0.8.

(iv)
$$(0.009)^{\frac{1}{3}}$$

Consider $y = x^{\frac{1}{3}}$. Let x = 0.008 and $\Delta x = 0.001$.

Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{3}} - (x)^{\frac{1}{3}} = (0.009)^{\frac{1}{3}} - (0.008)^{\frac{1}{3}} = (0.009)^{\frac{1}{3}} - 0.2$$

$$\Rightarrow (0.009)^{\frac{1}{3}} = 0.2 + \Delta y$$

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{3(x)^{\frac{2}{3}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{3}}\right]$$
$$= \frac{1}{3 \times 0.04} (0.001) = \frac{0.001}{0.12} = 0.008$$

Hence, the approximate value of $(0.009)^{\frac{1}{3}}$ is 0.2 + 0.008 = 0.208.

$$(v)^{(0.999)^{\frac{1}{10}}}$$

Consider $y = (x)^{\frac{1}{10}}$. Let x = 1 and $\Delta x = -0.001$.

Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{10}} - (x)^{\frac{1}{10}} = (0.999)^{\frac{1}{10}} - 1$$
$$\Rightarrow (0.999)^{\frac{1}{10}} = 1 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{10(x)^{\frac{9}{10}}} (\Delta x)$$

$$= \frac{1}{10} (-0.001) = -0.0001$$
[as $y = (x)^{\frac{1}{10}}$]

Hence, the approximate value of $(0.999)^{\frac{1}{10}}$ is 1 + (-0.0001) = 0.9999.

(vi)
$$(15)^{\frac{1}{4}}$$

Consider $y = x^{\frac{1}{4}}$. Let x = 16 and $\Delta x = -1$.

Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - x^{\frac{1}{4}} = (15)^{\frac{1}{4}} - (16)^{\frac{1}{4}} = (15)^{\frac{1}{4}} - 2$$
$$\Rightarrow (15)^{\frac{1}{4}} = 2 + \Delta y$$

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}}\right]$$
$$= \frac{1}{4(16)^{\frac{3}{4}}} (-1) = \frac{-1}{4 \times 8} = \frac{-1}{32} = -0.03125$$

Hence, the approximate value of $(15)^{\frac{1}{4}}$ is 2 + (-0.03125) = 1.96875.

(vii)
$$(26)^{\frac{1}{3}}$$

Consider $y = (x)^{\frac{1}{3}}$. Let x = 27 and $\Delta x = -1$.

Then

$$\Delta y = (x + \Delta x)^{\frac{1}{3}} - (x)^{\frac{1}{3}} = (26)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (26)^{\frac{1}{3}} - 3$$

$$\Rightarrow (26)^{\frac{1}{3}} = 3 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{3(x)^{\frac{2}{3}}} (\Delta x) \qquad \left[\text{as } y = (x)^{\frac{1}{3}}\right]$$
$$= \frac{1}{3(27)^{\frac{2}{3}}} (-1) = \frac{-1}{27} = -0.0\overline{370}$$

Hence, the approximate value of $(26)^{\frac{1}{3}}$ is 3 + (-0.0370) = 2.9629.

(viii)
$$(255)^{\frac{1}{4}}$$

Consider $y = (x)^{\frac{1}{4}}$. Let x = 256 and $\Delta x = -1$.

Then.

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - (x)^{\frac{1}{4}} = (255)^{\frac{1}{4}} - (256)^{\frac{1}{4}} = (255)^{\frac{1}{4}} - 4$$
$$\Rightarrow (255)^{\frac{1}{4}} = 4 + \Delta y$$

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}}\right]$$
$$= \frac{1}{4(256)^{\frac{3}{4}}} (-1) = \frac{-1}{4 \times 4^3} = -0.0039$$

Hence, the approximate value of $(255)^{\frac{1}{4}}$ is 4 + (-0.0039) = 3.9961.

(ix)
$$(82)^{\frac{1}{4}}$$

Consider $y = x^{\frac{1}{4}}$. Let x = 81 and $\Delta x = 1$.

Then

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - (x)^{\frac{1}{4}} = (82)^{\frac{1}{4}} - (81)^{\frac{1}{4}} = (82)^{\frac{1}{4}} - 3$$
$$\Rightarrow (82)^{\frac{1}{4}} = \Delta y + 3$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}}\right]$$
$$= \frac{1}{4(81)^{\frac{3}{4}}} (1) = \frac{1}{4(3)^3} = \frac{1}{108} = 0.009$$

Hence, the approximate value of $(82)^{\frac{1}{4}}$ is 3 + 0.009 = 3.009.

(x)
$$(401)^{\frac{1}{2}}$$

Consider $y = x^{\frac{1}{2}}$. Let x = 400 and $\Delta x = 1$.

Then,

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{401} - \sqrt{400} = \sqrt{401} - 20$$
$$\Rightarrow \sqrt{401} = 20 + \Delta y$$

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} \left(\Delta x\right) \qquad \left[\text{as } y = x^{\frac{1}{2}}\right]$$
$$= \frac{1}{2 \times 20} \left(1\right) = \frac{1}{40} = 0.025$$

Hence, the approximate value of $\sqrt{401}$ is 20 + 0.025 = 20.025.

(xi)
$$(0.0037)^{\frac{1}{2}}$$

Consider $y = x^{\frac{1}{2}}$. Let x = 0.0036 and $\Delta x = 0.0001$.

Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{2}} - (x)^{\frac{1}{2}} = (0.0037)^{\frac{1}{2}} - (0.0036)^{\frac{1}{2}} = (0.0037)^{\frac{1}{2}} - 0.06$$

$$\Rightarrow (0.0037)^{\frac{1}{2}} = 0.06 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}} (\Delta x)$$

$$= \frac{1}{2 \times 0.06} (0.0001)$$

$$= \frac{0.0001}{0.12} = 0.00083$$

Thus, the approximate value of $(0.0037)^{\frac{1}{2}}$ is 0.06 + 0.00083 = 0.06083.

(xii)
$$(26.57)^{\frac{1}{3}}$$

Consider $y = x^{\frac{1}{3}}$. Let x = 27 and $\Delta x = -0.43$.

Then.

$$\Delta y = (x + \Delta x)^{\frac{1}{3}} - x^{\frac{1}{3}} = (26.57)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (26.57)^{\frac{1}{3}} - 3$$
$$\Rightarrow (26.57)^{\frac{1}{3}} = 3 + \Delta y$$

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{3(x)^{\frac{2}{3}}} (\Delta x)$$

$$= \frac{1}{3(9)} (-0.43)$$

$$= \frac{-0.43}{27} = -0.015$$

Hence, the approximate value of $(26.57)^{\frac{1}{3}}$ is 3 + (-0.015) = 2.984.

(xiii)
$$(81.5)^{\frac{1}{4}}$$

Consider $y = x^{\frac{1}{4}}$. Let x = 81 and $\Delta x = 0.5$.

Then,

$$\Delta y = (x + \Delta x)^{\frac{1}{4}} - (x)^{\frac{1}{4}} = (81.5)^{\frac{1}{4}} - (81)^{\frac{1}{4}} = (81.5)^{\frac{1}{4}} - 3$$

$$\Rightarrow (81.5)^{\frac{1}{4}} = 3 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{4(x)^{\frac{3}{4}}} (\Delta x) \qquad \left[\text{as } y = x^{\frac{1}{4}}\right]$$
$$= \frac{1}{4(3)^{3}} (0.5) = \frac{0.5}{108} = 0.0046$$

Hence, the approximate value of $(81.5)^{\frac{1}{4}}$ is 3 + 0.0046 = 3.0046.

(xiv)
$$(3.968)^{\frac{3}{2}}$$

Consider $y = x^{\frac{2}{2}}$. Let x = 4 and $\Delta x = -0.032$.

Then,

$$\Delta y = (x + \Delta x)^{\frac{3}{2}} - x^{\frac{3}{2}} = (3.968)^{\frac{3}{2}} - (4)^{\frac{3}{2}} = (3.968)^{\frac{3}{2}} - 8$$
$$\Rightarrow (3.968)^{\frac{3}{2}} = 8 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{3}{2} \left(x\right)^{\frac{1}{2}} \left(\Delta x\right)$$

$$= \frac{3}{2} \left(2\right) \left(-0.032\right)$$

$$= -0.096$$

Hence, the approximate value of $(3.968)^{\frac{3}{2}}$ is 8 + (-0.096) = 7.904.

(xv)
$$(32.15)^{\frac{1}{5}}$$

Consider $y = x^{\frac{1}{5}}$. Let x = 32 and $\Delta x = 0.15$.

Then

$$\Delta y = (x + \Delta x)^{\frac{1}{5}} - x^{\frac{1}{5}} = (32.15)^{\frac{1}{5}} - (32)^{\frac{1}{5}} = (32.15)^{\frac{1}{5}} - 2$$
$$\Rightarrow (32.15)^{\frac{1}{5}} = 2 + \Delta y$$

Now, dy is approximately equal to Δy and is given by,

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{5(x)^{\frac{4}{5}}} \cdot (\Delta x)$$

$$= \frac{1}{5 \times (2)^{4}} (0.15)$$

$$= \frac{0.15}{80} = 0.00187$$

Hence, the approximate value of $(32.15)^{\frac{1}{5}}$ is 2 + 0.00187 = 2.00187.

Question 2:

Find the approximate value of f(2.01), where $f(x) = 4x^2 + 5x + 2$

Answer

Let x = 2 and $\Delta x = 0.01$. Then, we have:

$$f(2.01) = f(x + \Delta x) = 4(x + \Delta x)^2 + 5(x + \Delta x) + 2$$

Now, $\Delta y = f(x + \Delta x) - f(x)$

$$\Box f(x + \Delta x) = f(x) + \Delta y$$

$$\approx f(x) + f'(x) \cdot \Delta x \qquad (as dx = \Delta x)$$

$$\Rightarrow f(2.01) \approx (4x^2 + 5x + 2) + (8x + 5) \Delta x$$

$$= \left[4(2)^2 + 5(2) + 2\right] + \left[8(2) + 5\right](0.01) \qquad [as x = 2, \ \Delta x = 0.01]$$

$$= (16 + 10 + 2) + (16 + 5)(0.01)$$

$$= 28 + (21)(0.01)$$

$$= 28 + 0.21$$

$$= 28.21$$

Hence, the approximate value of f(2.01) is 28.21.

Question 3:

Find the approximate value of f(5.001), where $f(x) = x^3 - 7x^2 + 15$.

Answer

Let x = 5 and $\Delta x = 0.001$. Then, we have:

$$f(5.001) = f(x + \Delta x) = (x + \Delta x)^{3} - 7(x + \Delta x)^{2} + 15$$
Now, $\Delta y = f(x + \Delta x) - f(x)$

$$\therefore f(x + \Delta x) = f(x) + \Delta y$$

$$\approx f(x) + f'(x) \cdot \Delta x \qquad (as dx = \Delta x)$$

$$\Rightarrow f(5.001) \approx (x^{3} - 7x^{2} + 15) + (3x^{2} - 14x) \Delta x$$

$$= \left[(5)^{3} - 7(5)^{2} + 15 \right] + \left[3(5)^{2} - 14(5) \right] (0.001) \qquad [x = 5, \Delta x = 0.001]$$

$$= (125 - 175 + 15) + (75 - 70)(0.001)$$

$$= -35 + (5)(0.001)$$

$$= -35 + 0.005$$

$$= -34.995$$

Hence, the approximate value of f(5.001) is -34.995.

Question 4:

Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.

Answer

The volume of a cube (V) of side x is given by $V = x^3$.

$$\therefore dV = \left(\frac{dV}{dx}\right) \Delta x$$

$$= (3x^2) \Delta x$$

$$= (3x^2)(0.01x) \qquad \text{[as 1% of } x \text{ is } 0.01x\text{]}$$

$$= 0.03x^3$$

Hence, the approximate change in the volume of the cube is $0.03x^3$ m³.

Question 5:

Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%

Answer

The surface area of a cube (S) of side x is given by $S = 6x^2$.

$$\therefore \frac{dS}{dx} = \left(\frac{dS}{dx}\right) \Delta x$$

$$= (12x) \Delta x$$

$$= (12x)(0.01x) \qquad \text{[as 1% of } x \text{ is } 0.01x\text{]}$$

$$= 0.12x^2$$

Hence, the approximate change in the surface area of the cube is $0.12x^2$ m².

Question 6:

If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.

Answer

Let r be the radius of the sphere and Δr be the error in measuring the radius.

Then,

r = 7 m and $\Delta r = 0.02$ m

Now, the volume V of the sphere is given by,

$$V = \frac{4}{3}\pi r^3$$

$$\therefore \frac{dV}{dr} = 4\pi r^2$$

$$\therefore dV = \left(\frac{dV}{dr}\right)\Delta r$$

$$= \left(4\pi r^2\right)\Delta r$$

$$= 4\pi \left(7\right)^2 \left(0.02\right) \text{ m}^3 = 3.92\pi \text{ m}^3$$

Hence, the approximate error in calculating the volume is 3.92 n m^3 .

Question 7:

If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area.

Answer

Let r be the radius of the sphere and Δr be the error in measuring the radius.

Then,

r = 9 m and $\Delta r = 0.03 \text{ m}$

Now, the surface area of the sphere (S) is given by,

$$S = 4\pi r^2$$

$$\therefore \frac{dS}{dr} = 8\pi r$$

$$\therefore dS = \left(\frac{dS}{dr}\right) \Delta r$$

$$= (8\pi r) \Delta r$$

$$= 8\pi (9)(0.03) \text{ m}^2$$

$$= 2.16\pi \text{ m}^2$$

Hence, the approximate error in calculating the surface area is 2.16π m².

Question 8:

If $f(x) = 3x^2 + 15x + 5$, then the approximate value of f(3.02) is

A. 47.66 B. 57.66 C. 67.66 D. 77.66

Answer

Let x = 3 and $\Delta x = 0.02$. Then, we have:

$$f(3.02) = f(x + \Delta x) = 3(x + \Delta x)^{2} + 15(x + \Delta x) + 5$$
Now, $\Delta y = f(x + \Delta x) - f(x)$

$$\Rightarrow f(x + \Delta x) = f(x) + \Delta y$$

$$\approx f(x) + f'(x) \Delta x \qquad (As dx = \Delta x)$$

$$\Rightarrow f(3.02) \approx (3x^{2} + 15x + 5) + (6x + 15) \Delta x$$

$$= \left[3(3)^{2} + 15(3) + 5\right] + \left[6(3) + 15\right](0.02) \qquad [As x = 3, \Delta x = 0.02]$$

$$= (27 + 45 + 5) + (18 + 15)(0.02)$$

$$= 77 + (33)(0.02)$$

$$= 77 + 0.66$$

$$= 77.66$$

Hence, the approximate value of f(3.02) is 77.66.

The correct answer is D.

Question 9:

The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A.
$$0.06 x^3 \text{ m}^3$$
 B. $0.6 x^3 \text{ m}^3$ **C.** $0.09 x^3 \text{ m}^3$ **D.** $0.9 x^3 \text{ m}^3$

Answer

The volume of a cube (V) of side x is given by $V = x^3$.

$$\therefore dV = \left(\frac{dV}{dx}\right) \Delta x$$

$$= (3x^2) \Delta x$$

$$= (3x^2)(0.03x)$$

$$= 0.09x^3 \text{ m}^3$$
[As 3% of x is 0.03x]

Hence, the approximate change in the volume of the cube is $0.09x^3$ m³.

The correct answer is C.