Question 1:
$\int_{a}^{b} x d x$
Answer
It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=a, b=b$, and $f(x)=x$

$$
\begin{aligned}
\therefore \int_{a}^{b} x d x & =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[a+(a+h) \ldots(a+2 h) \ldots a+(n-1) h] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[(a+a+a+\ldots+a)+(h+2 h+3 h+\ldots+(n-1) h)] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[n a+h(1+2+3+\ldots+(n-1))] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[n a+h\left\{\frac{(n-1)(n)}{2}\right\}\right] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[n a+\frac{n(n-1) h}{2}\right] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{n}{n}\left[a+\frac{(n-1) h}{2}\right] \\
& =(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{(n-1) h}{2}\right] \\
& =(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{(n-1)(b-a)}{2 n}\right] \\
& =(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{\left(1-\frac{1}{n}\right)(b-a)}{2}\right] \\
& =(b-a)\left[a+\frac{(b-a)}{2}\right] \\
& =(b-a)\left[\frac{2 a+b-a}{2}\right] \\
& =\frac{(b-a)(b+a)}{2} \\
& =\frac{1}{2}\left(b^{2}-a^{2}\right)
\end{aligned}
$$

Question 2:
$\int_{0}^{5}(x+1) d x$
Answer
Let $I=\int_{0}^{5}(x+1) d x$
It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h) \ldots f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=0, b=5$, and $f(x)=(x+1)$
$\Rightarrow h=\frac{5-0}{n}=\frac{5}{n}$
$\therefore \int_{0}^{5}(x+1) d x=(5-0) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(0)+f\left(\frac{5}{n}\right)+\ldots+f\left((n-1) \frac{5}{n}\right)\right]$
$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(\frac{5}{n}+1\right)+\ldots\left\{1+\left(\frac{5(n-1)}{n}\right)\right\}\right]$

$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5}{n}\{1+2+3 \ldots(n-1)\}\right]$
$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5}{n} \cdot \frac{(n-1) n}{2}\right]$
$=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5(n-1)}{2}\right]$
$=5 \lim _{n \rightarrow \infty}\left[1+\frac{5}{2}\left(1-\frac{1}{n}\right)\right]$
$=5\left[1+\frac{5}{2}\right]$
$=5\left[\frac{7}{2}\right]$
$=\frac{35}{2}$

Question 3:
$\int_{2}^{3} x^{2} d x$
Answer
It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+f(a+2 h) \ldots f\{a+(n-1) h\}]$, where $h=\frac{b-a}{n}$
Here, $a=2, b=3$, and $f(x)=x^{2}$
$\Rightarrow h=\frac{3-2}{n}=\frac{1}{n}$
$\therefore \int_{2}^{3} x^{2} d x=(3-2) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(2)+f\left(2+\frac{1}{n}\right)+f\left(2+\frac{2}{n}\right) \ldots f\left\{2+(n-1) \frac{1}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[(2)^{2}+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots\left(2+\frac{(n-1)}{n}\right)^{2}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[2^{2}+\left\{2^{2}+\left(\frac{1}{n}\right)^{2}+2 \cdot 2 \cdot \frac{1}{n}\right\}+\ldots+\left\{(2)^{2}+\frac{(n-1)^{2}}{n^{2}}+2 \cdot 2 \cdot \frac{(n-1)}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(2^{2} \underset{n \text { times }}{\ldots}+2^{2}\right)+\left\{\left(\frac{1}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}+\ldots+\left(\frac{n-1}{n}\right)^{2}\right\}+2 \cdot 2 \cdot\left\{\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots+\frac{(n-1)}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{1}{n^{2}}\left\{1^{2}+2^{2}+3^{2} \ldots+(n-1)^{2}\right\}+\frac{4}{n}\{1+2+\ldots+(n-1)\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{1}{n^{2}}\left\{\frac{n(n-1)(2 n-1)}{6}\right\}+\frac{4}{n}\left\{\frac{n(n-1)}{2}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{n\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)}{6}+\frac{4 n-4}{2}\right]$
$=\lim _{n \rightarrow \infty}\left[4+\frac{1}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+2-\frac{2}{n}\right]$
$=4+\frac{2}{6}+2$
$=\frac{19}{3}$

Question 4:

$$
\int^{4}\left(x^{2}-x\right) d x
$$

Answer

$$
\text { Let } \begin{align*}
I & =\int_{1}^{4}\left(x^{2}-x\right) d x \\
& =\int_{1}^{4} x^{2} d x-\int_{1}^{4} x d x \tag{1}
\end{align*}
$$

Let $I=I_{1}-I_{2}$, where $I_{1}=\int^{4} x^{2} d x$ and $I_{2}=\int^{4} x d x$
It is known that,

$$
\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+f(a+(n-1) h)], \text { where } h=\frac{b-a}{n}
$$

For $I_{1}=\int_{1}^{4} x^{2} d x$,

$$
a=1, b=4 \text {, and } f(x)=x^{2}
$$

$$
\therefore h=\frac{4-1}{n}=\frac{3}{n}
$$

$$
I_{1}=\int_{1}^{4} x^{2} d x=(4-1) \lim _{n \rightarrow \infty} \frac{1}{n}[f(1)+f(1+h)+\ldots+f(1+(n-1) h)]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1^{2}+\left(1+\frac{3}{n}\right)^{2}+\left(1+2 \cdot \frac{3}{n}\right)^{2}+\ldots\left(1+\frac{(n-1) 3}{n}\right)^{2}\right]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1^{2}+\left\{1^{2}+\left(\frac{3}{n}\right)^{2}+2 \cdot \frac{3}{n}\right\}+\ldots+\left\{1^{2}+\left(\frac{(n-1) 3}{n}\right)^{2}+\frac{2 \cdot(n-1) \cdot 3}{n}\right\}\right]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(1^{2} \underset{n \text { times }}{ }+1^{2}\right)+\left(\frac{3}{n}\right)^{2}\left\{1^{2}+2^{2}+\ldots+(n-1)^{2}\right\}+2 \cdot \frac{3}{n}\{1+2+\ldots+(n-1)\}\right]
$$

$$
\begin{align*}
&=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{9}{n^{2}}\left\{\frac{(n-1)(n)(2 n-1)}{6}\right\}+\frac{6}{n}\left\{\frac{(n-1)(n)}{2}\right\}\right] \\
&=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{9 n}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+\frac{6 n-6}{2}\right] \\
&=3 \lim _{n \rightarrow \infty}\left[1+\frac{9}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+3-\frac{3}{n}\right] \\
&=3[1+3+3] \\
&=3[7] \\
& I_{1}=21 \tag{2}
\end{align*}
$$

For $I_{2}=\int_{1}^{4} x d x$,

$$
\begin{aligned}
& a= 1, b=4, \text { and } f(x)=x \\
& \Rightarrow h=\frac{4-1}{n}=\frac{3}{n} \\
& \begin{aligned}
\therefore I_{2} & =(4-1) \lim _{n \rightarrow \infty} \frac{1}{n}[f(1)+f(1+h)+\ldots f(a+(n-1) h)] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}[1+(1+h)+\ldots+(1+(n-1) h)] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(1+\frac{3}{n}\right)+\ldots+\left\{1+(n-1) \frac{3}{n}\right\}\right] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[(1+1+\ldots+1)+\frac{3}{n}(1+2+\ldots+(n-1))\right] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{3}{n}\left\{\frac{(n-1) n}{2}\right\}\right] \\
& =3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\frac{3}{2}\left(1-\frac{1}{n}\right)\right] \\
& =3\left[1+\frac{3}{2}\right] \\
& =3\left[\frac{5}{2}\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{equation*}
I_{2}=\frac{15}{2} \tag{3}
\end{equation*}
$$

From equations (2) and (3), we obtain
$I=I_{1}+I_{2}=21-\frac{15}{2}=\frac{27}{2}$

Question 5:
$\int_{-1}^{1} e^{x} d x$
Answer
Let $I=\int_{-1}^{1} e^{x} d x$
It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h) \ldots f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=-1, b=1$, and $f(x)=e^{x}$
$\therefore h=\frac{1+1}{n}=\frac{2}{n}$

$$
\begin{aligned}
& \therefore I=(1+1) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(-1)+f\left(-1+\frac{2}{n}\right)+f\left(-1+2 \cdot \frac{2}{n}\right)+\ldots+f\left(-1+\frac{(n-1) 2}{n}\right)\right] \\
&=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{-1}+e^{\left(-1+\frac{2}{n}\right)}+e^{\left(-1+2 \frac{2}{n}\right)}+\ldots e^{\left(-1+(n-1)^{\left.\frac{2}{n}\right)}\right]}\right] \\
&=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{-1}\left\{1+e^{\frac{2}{n}}+e^{\frac{4}{n}}+e^{\frac{6}{n}}+e^{(n-1)^{2}} \frac{2}{n}\right\}\right] \\
&=2 \lim _{n \rightarrow \infty} \frac{e^{-1}}{n}\left[\frac{e^{\frac{2 n}{n}-1}}{e^{\frac{2}{n}-1}}\right] \\
&=e^{-1} \times 2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{e^{2}-1}{e^{\frac{2}{n}-1}}\right] \\
&=\frac{e^{-1} \times 2\left(e^{2}-1\right)}{} \\
&\left.\frac{\lim _{n}\left(\frac{e^{\frac{2}{n}}-1}{2}\right) \times 2}{\frac{2}{n}}\right) \\
&=e^{-1}\left[\frac{2\left(e^{2}-1\right)}{2}\right] \\
&=\frac{e^{2}-1}{e} \\
&=\left(e-\frac{1}{e}\right) \\
&\left.\lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right)=1\right]
\end{aligned}
$$

Question 6:
$\int_{0}^{4}\left(x+e^{2 x}\right) d x$
Answer
It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=0, b=4$, and $f(x)=x+e^{2 x}$
$\therefore h=\frac{4-0}{n}=\frac{4}{n}$

$$
\begin{aligned}
\Rightarrow \int_{0}^{4}\left(x+e^{2 x}\right) d x & =(4-0) \lim _{n \rightarrow \infty} \frac{1}{n}[f(0)+f(h)+f(2 h)+\ldots+f((n-1) h)] \\
& =4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(0+e^{0}\right)+\left(h+e^{2 h}\right)+\left(2 h+e^{22 h}\right)+\ldots+\left\{(n-1) h+e^{2(n-1) h}\right\}\right] \\
& =4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(h+e^{2 h}\right)+\left(2 h+e^{4 h}\right)+\ldots+\left\{(n-1) h+e^{2(n-1) h}\right\}\right] \\
& =4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\{h+2 h+3 h+\ldots+(n-1) h\}+\left(1+e^{2 h}+e^{4 h}+\ldots+e^{2(n-1) h}\right)\right] \\
& =4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[h\{1+2+\ldots(n-1)\}+\left(\frac{e^{2 h n}-1}{e^{2 h}-1}\right)\right] \\
& =4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{(h(n-1) n)}{2}+\left(\frac{e^{2 h n}-1}{e^{2 h}-1}\right)\right] \\
& =4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{4}{n} \cdot \frac{(n-1) n}{2}+\left(\frac{e^{8}-1}{\frac{8}{e^{n}}}\right)\right] \\
& =4(2)+4 \lim _{n \rightarrow \infty} \frac{\left(e^{8}-1\right)}{\left(\frac{e^{\frac{8}{n}}-1}{\frac{8}{n}}\right) 8} \\
& =8+\frac{4 \cdot\left(e^{8}-1\right)}{8} \\
& =8+\frac{e^{8}-1}{2} \\
& \frac{15+e^{8}}{2}
\end{aligned}
$$

