Exercise 7.4

Question 1:

If ${ }^{n} \mathrm{C}_{8}={ }^{\mathrm{n}} \mathrm{C}_{2}$, find ${ }^{\mathrm{n}} \mathrm{C}_{2}$.

Answer

It is known that, ${ }^{n} \mathrm{C}_{\mathrm{a}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{b}} \Rightarrow \mathrm{a}=\mathrm{b}$ or $\mathrm{n}=\mathrm{a}+\mathrm{b}$
Therefore,

$$
\begin{aligned}
& { }^{n} \mathrm{C}_{8}={ }^{\mathrm{n}} \mathrm{C}_{2} \Rightarrow \mathrm{n}=8+2=10 \\
& \therefore{ }^{\mathrm{n}} \mathrm{C}_{2}={ }^{10} \mathrm{C}_{2}=\frac{10!}{2!(10-2)!}=\frac{10!}{2!8!}=\frac{10 \times 9 \times 8!}{2 \times 1 \times 8!}=45
\end{aligned}
$$

Question 2:

Determine n if

$$
\text { (i) }{ }^{2 n} C_{3}:{ }^{n} C_{3}=12: 1 \text { (ii) }{ }^{2 n} C_{3}:{ }^{n} C_{3}=11: 1
$$

Answer
(i)

$$
\begin{aligned}
& \frac{{ }^{2 n} C_{3}}{{ }^{n} C_{3}}=\frac{12}{1} \\
& \Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=\frac{12}{1} \\
& \Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3)!}{(2 n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!}=12 \\
& \Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=12 \\
& \Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=12 \\
& \Rightarrow \frac{(2 n-1)}{(n-2)}=3 \\
& \Rightarrow 2 n-1=3(n-2) \\
& \Rightarrow 2 n-1=3 n-6 \\
& \Rightarrow 3 n-2 n=-1+6 \\
& \Rightarrow n=5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{{ }^{2 n} C_{3}}{{ }^{2} C_{3}}=\frac{11}{1} \\
& \Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=11 \\
& \Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3)!}{(2 n-3)!} \times \frac{(n-3)!}{n(n-1)(n-2)(n-3)!}=11 \\
& \Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=11 \\
& \Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=11 \\
& \Rightarrow \frac{4(2 n-1)}{n-2}=11 \\
& \Rightarrow 4(2 n-1)=11(n-2) \\
& \Rightarrow 8 n-4=11 n-22 \\
& \Rightarrow 11 n-8 n=-4+22
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 3 \mathrm{n}=18 \\
& \Rightarrow \mathrm{n}=6
\end{aligned}
$$

Question 3:

How many chords can be drawn through 21 points on a circle?
Answer
For drawing one chord on a circle, only 2 points are required.
To know the number of chords that can be drawn through the given 21 points on a circle, the number of combinations have to be counted.
Therefore, there will be as many chords as there are combinations of 21 points taken 2 at a time.

Thus, required number of chords $={ }^{21} \mathrm{C}_{2}=\frac{21!}{2!(21-2)!}=\frac{21!}{2!19!}=\frac{21 \times 20}{2}=210$

Question 4:

In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Answer
A team of 3 boys and 3 girls is to be selected from 5 boys and 4 girls.
3 boys can be selected from 5 boys in ${ }^{5} \mathrm{C}_{3}$ ways.
3 girls can be selected from 4 girls in ${ }^{4} \mathrm{C}_{3}$ ways.
Therefore, by multiplication principle, number of ways in which a team of 3 boys and 3
girls can be selected $={ }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{3}=\frac{5!}{3!2!} \times \frac{4!}{3!1!}$
$=\frac{5 \times 4 \times 3!}{3!\times 2} \times \frac{4 \times 3!}{3!}$
$=10 \times 4=40$

Question 5:

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Answer
There are a total of 6 red balls, 5 white balls, and 5 blue balls.

9 balls have to be selected in such a way that each selection consists of 3 balls of each colour.

Here,
3 balls can be selected from 6 red balls in ${ }^{6} \mathrm{C}_{3}$ ways.
3 balls can be selected from 5 white balls in ${ }^{5} \mathrm{C}_{3}$ ways.
3 balls can be selected from 5 blue balls in ${ }^{5} \mathrm{C}_{3}$ ways.
Thus, by multiplication principle, required number of ways of selecting 9 balls

$$
\begin{aligned}
& ={ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{3}=\frac{6!}{3!3!} \times \frac{5!}{3!2!} \times \frac{5!}{3!2!} \\
& =\frac{6 \times 5 \times 4 \times 3!}{3!\times 3 \times 2} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \times \frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \\
& =20 \times 10 \times 10=2000
\end{aligned}
$$

Question 6:

Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.

Answer
In a deck of 52 cards, there are 4 aces. A combination of 5 cards have to be made in which there is exactly one ace.
Then, one ace can be selected in ${ }^{4} \mathrm{C}_{1}$ ways and the remaining 4 cards can be selected out of the 48 cards in ${ }^{48} \mathrm{C}_{4}$ ways.
Thus, by multiplication principle, required number of 5 card combinations

$$
\begin{aligned}
& ={ }^{48} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{1}=\frac{48!}{4!44!} \times \frac{4!}{1!3!} \\
& =\frac{48 \times 47 \times 46 \times 45}{4 \times 3 \times 2 \times 1} \times 4 \\
& =778320
\end{aligned}
$$

Question 7:

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?

Answer
Out of 17 players, 5 players are bowlers.
A cricket team of 11 players is to be selected in such a way that there are exactly 4 bowlers.
4 bowlers can be selected in ${ }^{5} \mathrm{C}_{4}$ ways and the remaining 7 players can be selected out of the 12 players in ${ }^{12} \mathrm{C}_{7}$ ways.
Thus, by multiplication principle, required number of ways of selecting cricket team
$={ }^{5} \mathrm{C}_{4} \times{ }^{12} \mathrm{C}_{7}=\frac{5!}{4!1!} \times \frac{12!}{7!5!}=5 \times \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1}=3960$

Question 8:

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.

Answer
There are 5 black and 6 red balls in the bag.
2 black balls can be selected out of 5 black balls in ${ }^{5} \mathrm{C}_{2}$ ways and 3 red balls can be selected out of 6 red balls in ${ }^{6} \mathrm{C}_{3}$ ways.
Thus, by multiplication principle, required number of ways of selecting 2 black and 3 red balls $={ }^{5} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3}=\frac{5!}{2!3!} \times \frac{6!}{3!3!}=\frac{5 \times 4}{2} \times \frac{6 \times 5 \times 4}{3 \times 2 \times 1}=10 \times 20=200$

Question 9:

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?

Answer

There are 9 courses available out of which, 2 specific courses are compulsory for every student.

Therefore, every student has to choose 3 courses out of the remaining 7 courses. This can be chosen in ${ }^{7} \mathrm{C}_{3}$ ways.
Thus, required number of ways of choosing the programme

$$
={ }^{7} \mathrm{C}_{3}=\frac{7!}{3!4!}=\frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4!}=35
$$

NCERT Miscellaneous Solutions

Question 1:

How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
Answer
In the word DAUGHTER, there are 3 vowels namely, A, U, and E , and 5 consonants namely, D, G, H, T, and R.

Number of ways of selecting 2 vowels out of 3 vowels $={ }^{3} \mathrm{C}_{2}=3$.
Number of ways of selecting 3 consonants out of 5 consonants $={ }^{5} \mathrm{C}_{3}=10$
Therefore, number of combinations of 2 vowels and 3 consonants $=3 \times 10=30$
Each of these 30 combinations of 2 vowels and 3 consonants can be arranged among themselves in 5 ! ways.
Hence, required number of different words $=30 \times 5!=3600$

Question 2:

How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?

Answer
In the word EQUATION, there are 5 vowels, namely, $\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}$, and U , and 3 consonants, namely, Q, T, and N .
Since all the vowels and consonants have to occur together, both (AEIOU) and (QTN) can be assumed as single objects. Then, the permutations of these 2 objects taken all at a time are counted. This number would be ${ }^{2} \mathrm{P}_{2}=2$!

Corresponding to each of these permutations, there are 5! permutations of the five vowels taken all at a time and 3! permutations of the 3 consonants taken all at a time. Hence, by multiplication principle, required number of words $=2!\times 5!\times 3!$
$=1440$

Question 3:

