Exercise 8.2

Question 1:

Find the coefficient of x^5 in $(x + 3)^8$

Answer

It is known that $(r + 1)^{\text{th}}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$

Assuming that x^5 occurs in the $(r + 1)^{th}$ term of the expansion $(x + 3)^8$, we obtain

$$T_{r+1} = {}^{8}C_{r}(x)^{8-r}(3)^{r}$$

Comparing the indices of x in x^5 and in T_{r+1} , we obtain

r = 3

Thus, the coefficient of
$$x^5$$
 is ${}^{8}C_{3}(3)^{3} = \frac{8!}{3!5!} \times 3^{3} = \frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2.5!} \cdot 3^{3} = 1512$

Question 2:

Find the coefficient of a^5b^7 in $(a - 2b)^{12}$

Answer

It is known that $(r + 1)^{\text{th}}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$

Assuming that a^5b^7 occurs in the $(r + 1)^{th}$ term of the expansion $(a - 2b)^{12}$, we obtain

$$T_{r+1} = {}^{12}C_r(a)^{12-r}(-2b)^r = {}^{12}C_r(-2)^r(a)^{12-r}(b)^r$$

Comparing the indices of a and b in $a^5 b^7$ and in T_{r+1} , we obtain

Thus, the coefficient of a^5b^7 is

$${}^{12}C_7(-2)^7 = -\frac{12!}{7!5!} \cdot 2^7 = -\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8.7!}{5 \cdot 4 \cdot 3 \cdot 2.7!} \cdot 2^7 = -(792)(128) = -101376$$

Question 3:

Write the general term in the expansion of $(x^2 - y)^6$ Answer It is known that the general term T_{r+1} {which is the $(r + 1)^{th}$ term} in the binomial

expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$. Thus, the general term in the expansion of $(x^2 - y^6)$ is

$$T_{r+1} = {}^{6}C_{r} \left(x^{2}\right)^{6-r} \left(-y\right)^{r} = \left(-1\right)^{r} {}^{6}C_{r} . x^{12-2r} . y^{r}$$

Question 4:

Write the general term in the expansion of $(x^2 - yx)^{12}$, $x \neq 0$

Answer

It is known that the general term
$$T_{r+1}$$
 {which is the $(r + 1)^{th}$ term} in the binomial

expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$

Thus, the general term in the expansion of $(x^2 - yx)^{12}$ is

$$T_{r+1} = {}^{12}C_r (x^2)^{12-r} (-yx)^r = (-1)^{r} {}^{12}C_r . x^{24-2r} . y^r . x^r = (-1)^{r} {}^{12}C_r . x^{24-r} . y^r$$

Question 5:

Find the 4th term in the expansion of $(x - 2y)^{12}$.

Answer

It is known that $(r + 1)^{\text{th}}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$

Thus, the 4th term in the expansion of $(x - 2y)^{12}$ is

$$T_{4} = T_{3+1} = {}^{12}C_{3}(x){}^{12-3}(-2y){}^{3} = (-1){}^{3} \cdot \frac{12!}{3!9!} \cdot x^{9} \cdot (2){}^{3} \cdot y^{3} = -\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot (2){}^{3} x^{9} y^{3} = -1760 x^{9} y^{3}$$

Question 6:

Find the 13th term in the expansion of
$$\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$$
, $x \neq 0$

Answer

It is known that $(r + 1)^{\text{th}}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$

Thus, 13th term in the expansion of
$$\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$$
 is
 $T_{13} = T_{12+1} = {}^{18}C_{12} \left(9x\right)^{18-12} \left(-\frac{1}{3\sqrt{x}}\right)^{12}$
 $= \left(-1\right)^{12} \frac{18!}{12!6!} \left(9\right)^6 \left(x\right)^6 \left(\frac{1}{3}\right)^{12} \left(\frac{1}{\sqrt{x}}\right)^{12}$
 $= \frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12! \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^6 \cdot \left(\frac{1}{x^6}\right) \cdot 3^{12} \left(\frac{1}{3^{12}}\right)$ $\left[9^6 = \left(3^2\right)^6 = 3^{12}$
 $= 18564$

Question 7:

Find the middle terms in the expansions of
$$\left(3\!-\!\frac{x^3}{6}\right)^{\!\!7}$$

Answer

It is known that in the expansion of $(a + b)^n$, if *n* is odd, then there are two middle

terms, namely,
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term and $\left(\frac{n+1}{2}+1\right)^{\text{th}}$ term.
Therefore, the middle terms in the expansion of $\left(3-\frac{x^3}{6}\right)^7$ are $\left(\frac{7+1}{2}\right)^{\text{th}} = 4^{\text{th}}$ term and $\left(7+1-1\right)^{\text{th}}$ ert

$$\left[\frac{7+1}{2} + 1 \right] = 5^{\text{th}}$$
term
$$T_{4} = T_{3+1} = {}^{7}C_{3} \left(3 \right)^{7-3} \left(-\frac{x^{3}}{6} \right)^{3} = \left(-1 \right)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{x^{9}}{6^{3}}$$

$$= -\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot x^{9} = -\frac{105}{8} x^{9}$$

$$T_{5} = T_{4+1} = {}^{7}C_{4} \left(3 \right)^{7-4} \left(-\frac{x^{3}}{6} \right)^{4} = \left(-1 \right)^{4} \frac{7!}{4!3!} \left(3 \right)^{3} \cdot \frac{x^{12}}{6^{4}}$$

$$= \frac{7 \cdot 6 \cdot 5 \cdot 4!}{4! \cdot 3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12} = \frac{35}{48} x^{12}$$

Thus, the middle terms in the expansion of

Ouestion 8:

Find the middle terms in the expansions of
$$\left(\frac{x}{3}+9y\right)^{10}$$

Answer

Class XI

 $\left(\frac{n}{2}+1\right)^{m}$ It is known that in the expansion $(a + b)^n$, if *n* is even, then the middle term is term.

Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{th}=6^{th}$ term

$$T_{6} = T_{5+1} = {}^{10}C_{5} \left(\frac{x}{3}\right)^{10-5} (9y)^{5} = \frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{5}} \cdot 9^{5} \cdot y^{5}$$
$$= \frac{10.9 \cdot 8 \cdot 7 \cdot 6.5!}{5 \cdot 4 \cdot 3 \cdot 2.5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot x^{5} y^{5}$$
$$= 252 \times 3^{5} \cdot x^{5} \cdot y^{5} = 61236 x^{5} y^{5}$$

Thus, the middle term in the expansion of $\left(\frac{x}{3}+9y\right)^{10}$ is 61236 x^5y^5 .

Question 9:

In the expansion of $(1 + a)^{m+n}$, prove that coefficients of a^m and a^n are equal.

Answer

It is known that $(r + 1)^{\text{th}}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$

Assuming that a^m occurs in the $(r + 1)^{\text{th}}$ term of the expansion $(1 + a)^{m+n}$, we obtain $T_{r+1} = {}^{m+n} C_r (1)^{m+n-r} (a)^r = {}^{m+n} C_r a^r$

Comparing the indices of *a* in a^m and in T_{r+1} , we obtain

$$r = m$$

Class XI

Therefore, the coefficient of a^m is

$$^{m+n}C_m = \frac{(m+n)!}{m!(m+n-m)!} = \frac{(m+n)!}{m!n!}$$
 ...(1)

Assuming that a^n occurs in the $(k + 1)^{\text{th}}$ term of the expansion $(1 + a)^{m+n}$, we obtain

$$T_{k+1} = {}^{m+n} C_k (1)^{m+n-k} (a)^k = {}^{m+n} C_k (a)^k$$

Comparing the indices of *a* in a^n and in T_{k+1} , we obtain

$$k = n$$

Therefore, the coefficient of a^n is

$$^{m+n}C_n = \frac{(m+n)!}{n!(m+n-n)!} = \frac{(m+n)!}{n!m!}$$
 ...(2)

Thus, from (1) and (2), it can be observed that the coefficients of a^m and a^n in the expansion of $(1 + a)^{m+n}$ are equal.

Question 10:

The coefficients of the $(r - 1)^{\text{th}}$, r^{th} and $(r + 1)^{\text{th}}$ terms in the expansion of $(x + 1)^n$ are in the ratio 1:3:5. Find *n* and *r*.

Answer

It is known that $(k + 1)^{\text{th}}$ term, (T_{k+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{k+1} = {}^nC_k a^{n-k}b^k$

Therefore, $(r - 1)^{\text{th}}$ term in the expansion of $(x + 1)^n$ is

$$T_{r-1} = {}^{n} C_{r-2} (x)^{n-(r-2)} (1)^{(r-2)} = {}^{n} C_{r-2} x^{n-r+2}$$

 r^{th} term in the expansion of $(x + 1)^n$ is $T_r = {}^n C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)} = {}^n C_{r-1}x^{n-r+1}$

 $(r + 1)^{\text{th}}$ term in the expansion of $(x + 1)^n$ is $T_{r+1} = {}^n C_r (x)^{n-r} (1)^r = {}^n C_r x^{n-r}$

Therefore, the coefficients of the $(r - 1)^{\text{th}}$, r^{th} , and $(r + 1)^{\text{th}}$ terms in the expansion of $(x + 1)^{\text{th}}$

+ 1)" are ${}^{n}C_{r-2}$, ${}^{n}C_{r-1}$, and ${}^{n}C_{r}$ respectively. Since these coefficients are in the ratio 1:3:5, we obtain

$$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{1}{3} \text{ and } \frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{3}{5}$$

$$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!} = \frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)(n-r+1)!}$$

$$= \frac{r-1}{n-r+2}$$

$$\therefore \frac{r-1}{n-r+2} = \frac{1}{3} \Rightarrow 3r-3 = n-r+2 \Rightarrow n-4r+5 = 0 \qquad ...(1) \frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!} = \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} = \frac{r}{n-r+1}$$

$$\therefore \frac{r}{n-r+1} = \frac{3}{5}$$

$$\Rightarrow 5r = 3n - 3r + 3$$

$$\Rightarrow 3n - 8r + 3 = 0 \qquad ...(2)$$

Multiplying (1) by 3 and subtracting it from (2), we obtain

4r - 12 = 0 $\Rightarrow r = 3$ Putting the value of *r* in (1), we obtain n - 12 + 5 = 0 $\Rightarrow n = 7$ Thus, n = 7 and r = 3

Question 11:

Prove that the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$.

Answer

It is known that $(r + 1)^{\text{th}}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$ Assuming that x^n occurs in the $(r + 1)^{th}$ term of the expansion of $(1 + x)^{2n}$, we obtain

$$T_{r+1} = {}^{2n} C_r (1)^{2n-r} (x)^r = {}^{2n} C_r (x)^r$$

Comparing the indices of x in x^n and in T_{r+1} , we obtain

Therefore, the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is

$${}^{2n}C_{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{n!n!} = \frac{(2n)!}{(n!)^{2}} \qquad \dots (1)$$

Assuming that x^n occurs in the $(k + 1)^{\text{th}}$ term of the expansion $(1 + x)^{2n-1}$, we obtain

$$T_{k+1} = {}^{2n-1} C_k (1)^{2n-1-k} (x)^{k} = {}^{2n-1} C_k (x)^{k}$$

Comparing the indices of x in x^n and T_{k+1} , we obtain

$$k = n$$

Therefore, the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$ is

$${}^{2n-1}C_{n} = \frac{(2n-1)!}{n!(2n-1-n)!} = \frac{(2n-1)!}{n!(n-1)!}$$
$$= \frac{2n.(2n-1)!}{2n.n!(n-1)!} = \frac{(2n)!}{2.n!n!} = \frac{1}{2} \left[\frac{(2n)!}{(n!)^{2}} \right] \qquad \dots (2)$$

From (1) and (2), it is observed that

$$\frac{1}{2} {\binom{2n}{C_n}} = {}^{2n-1} C_n$$
$$\Rightarrow {}^{2n} C_n = 2 {\binom{2n-1}{C_n}}$$

Therefore, the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$.

Hence, proved.

Question 12:

Find a positive value of *m* for which the coefficient of x^2 in the expansion $(1 + x)^m$ is 6. Answer It is known that $(r + 1)^{\text{th}}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$ Class XI

Assuming that x^2 occurs in the $(r + 1)^{th}$ term of the expansion $(1 + x)^m$, we obtain

$$T_{r+1} = {}^{m} C_{r} (1)^{m-r} (x)^{r} = {}^{m} C_{r} (x)^{r}$$

Comparing the indices of x in x^2 and in T_{r+1} , we obtain

Therefore, the coefficient of x^2 is ${}^{^{\mathrm{m}}\mathrm{C}_2}$.

It is given that the coefficient of x^2 in the expansion $(1 + x)^m$ is 6.

$$\therefore^{m} C_{2} = 6$$

$$\Rightarrow \frac{m!}{2!(m-2)!} = 6$$

$$\Rightarrow \frac{m(m-1)(m-2)!}{2 \times (m-2)!} = 6$$

$$\Rightarrow m(m-1) = 12$$

$$\Rightarrow m^{2} - m - 12 = 0$$

$$\Rightarrow m^{2} - 4m + 3m - 12 = 0$$

$$\Rightarrow m(m-4) + 3(m-4) = 0$$

$$\Rightarrow (m-4)(m+3) = 0$$

$$\Rightarrow (m-4)(m+3) = 0$$

$$\Rightarrow (m-4) = 0 \text{ or } (m+3) = 0$$

$$\Rightarrow m = 4 \text{ or } m = -3$$

Thus, the positive value of m, for which the coefficient of x^2 in the expansion $(1 + x)^m$ is 6, is 4.