Exercise 8.2

Question 1:

Find the coefficient of x^{5} in $(x+3)^{8}$
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{~b}^{\mathrm{r}}
$$

Assuming that x^{5} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+3)^{8}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{8} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{8-r}(3)^{r}
$$

Comparing the indices of x in x^{5} and in T_{r+1}, we obtain $r=3$

Thus, the coefficient of x^{5} is ${ }^{8} \mathrm{C}_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2 \cdot 5!} \cdot 3^{3}=1512$

Question 2:

Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.
Assuming that $a^{5} b^{7}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(a-2 b)^{12}$, we obtain

$$
T_{r+1}={ }^{12} C_{r}(a)^{12-r}(-2 b)^{r}={ }^{12} C_{r}(-2)^{r}(a)^{12-r}(b)^{r}
$$

Comparing the indices of a and b in $a^{5} b^{7}$ and in T_{r+1}, we obtain
$r=7$
Thus, the coefficient of $a^{5} b^{7}$ is

$$
{ }^{12} \mathrm{C}_{7}(-2)^{7}=-\frac{12!}{7!5!} \cdot 2^{7}=-\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8.7!}{5 \cdot 4 \cdot 3 \cdot 2.7!} \cdot 2^{7}=-(792)(128)=-101376
$$

Question 3:

Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$
Answer

It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term\} in the binomial
expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the general term in the expansion of $\left(x^{2}-y^{6}\right)$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{6} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{6-\mathrm{r}}(-\mathrm{y})^{\mathrm{r}}=(-1)^{\mathrm{r}}{ }^{6} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{12-2 \mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}
$$

Question 4:

Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$
Answer
It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term\} in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the general term in the expansion of $\left(x^{2}-y x\right)^{12}$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{12} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{12-\mathrm{r}}(-\mathrm{yx})^{\mathrm{r}}=(-1)^{\mathrm{r}}{ }^{12} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{24-2 \mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}=(-1)^{\mathrm{r}}{ }^{12} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{24-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}
$$

Question 5:

Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.
Thus, the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$ is

$$
\mathrm{T}_{4}=\mathrm{T}_{3+1}={ }^{12} \mathrm{C}_{3}(\mathrm{x})^{12-3}(-2 \mathrm{y})^{3}=(-1)^{3} \cdot \frac{12!}{3!9!} \cdot \mathrm{x}^{9} \cdot(2)^{3} \cdot \mathrm{y}^{3}=-\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} \mathrm{x}^{9} \mathrm{y}^{3}=-1760 \mathrm{x}^{9} \mathrm{y}^{3}
$$

Question 6:

Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.

Thus, $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is

$$
\begin{aligned}
\mathrm{T}_{13}=\mathrm{T}_{12+1} & ={ }^{18} \mathrm{C}_{12}(9 \mathrm{x})^{18-12}\left(-\frac{1}{3 \sqrt{\mathrm{x}}}\right)^{12} \\
& =(-1)^{12} \frac{18!}{12!6!}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12} \\
& =\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13.12!}{12!.6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot \mathrm{x}^{6} \cdot\left(\frac{1}{\mathrm{x}^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right) \quad\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right] \\
& =18564
\end{aligned}
$$

Question 7:

Find the middle terms in the expansions of $\left(3-\frac{x^{3}}{6}\right)^{7}$
Answer
It is known that in the expansion of $(a+b)^{n}$, if n is odd, then there are two middle
terms, namely, $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term and $\left(\frac{\mathrm{n}+1}{2}+1\right)^{\text {th }}$ term.
Therefore, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{\text {th }}=4^{\text {th }}$ term and $\left(\frac{7+1}{2}+1\right)^{\text {th }}=5^{\text {th }}$ term
$\mathrm{T}_{4}=\mathrm{T}_{3+1}={ }^{7} \mathrm{C}_{3}(3)^{7-3}\left(-\frac{\mathrm{x}^{3}}{6}\right)^{3}=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{\mathrm{x}^{9}}{6^{3}}$
$=-\frac{7 \cdot 6 \cdot 5.4!}{3 \cdot 2.4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot x^{9}=-\frac{105}{8} x^{9}$
$\mathrm{T}_{5}=\mathrm{T}_{4+1}={ }^{7} \mathrm{C}_{4}(3)^{7-4}\left(-\frac{\mathrm{x}^{3}}{6}\right)^{4}=(-1)^{4} \frac{7!}{4!3!}(3)^{3} \cdot \frac{\mathrm{x}^{12}}{6^{4}}$
$=\frac{7 \cdot 6 \cdot 5.4!}{4!.3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}=\frac{35}{48} x^{12}$

Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Question 8:

Find the middle terms in the expansions of $\left(\frac{x}{3}+9 y\right)^{10}$
Answer
It is known that in the expansion $(a+b)^{n}$, if n is even, then the middle term is $\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }}$ term.
Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{\text {th }}=6^{\text {th }}$ term

$$
\begin{array}{rlr}
\mathrm{T}_{6}=\mathrm{T}_{5+1} & ={ }^{10} \mathrm{C}_{5}\left(\frac{\mathrm{x}}{3}\right)^{10-5}(9 \mathrm{y})^{5}=\frac{10!}{5!5!} \cdot \frac{\mathrm{x}^{5}}{3^{5}} \cdot 9^{5} \cdot \mathrm{y}^{5} & \\
& =\frac{10.9 \cdot 8 \cdot 7 \cdot 6.5!}{5 \cdot 4 \cdot 3 \cdot 2.5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot \mathrm{x}^{5} \mathrm{y}^{5} & {\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]} \\
& =252 \times 3^{5} \cdot \mathrm{x}^{5} \cdot \mathrm{y}^{5}=61236 \mathrm{x}^{5} \mathrm{y}^{5} &
\end{array}
$$

Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$.

Question 9:

In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.

Assuming that a^{m} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{r+1}={ }^{m+n} C_{r}(1)^{m+n-r}(a)^{r}={ }^{m+n} C_{r} a^{r}
$$

Comparing the indices of a in a^{m} and in T_{r+1}, we obtain
$r=m$

Therefore, the coefficient of a^{m} is

$$
\begin{equation*}
{ }^{\mathrm{m}+\mathrm{n}} \mathrm{C}_{\mathrm{m}}=\frac{(\mathrm{m}+\mathrm{n})!}{\mathrm{m}!(\mathrm{m}+\mathrm{n}-\mathrm{m})!}=\frac{(\mathrm{m}+\mathrm{n})!}{\mathrm{m}!\mathrm{n}!} \tag{1}
\end{equation*}
$$

Assuming that a^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+a)^{m+n}$, we obtain $T_{k+1}={ }^{m+n} C_{k}(1)^{m+n-k}(a)^{k}={ }^{m+n} C_{k}(a)^{k}$

Comparing the indices of a in a^{n} and in T_{k+1}, we obtain

$$
k=n
$$

Therefore, the coefficient of a^{n} is

$$
\begin{equation*}
{ }^{m+n} C_{n}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!} \tag{2}
\end{equation*}
$$

Thus, from (1) and (2), it can be observed that the coefficients of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are equal.

Question 10:

The coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio $1: 3: 5$. Find n and r.
Answer
It is known that $(k+1)^{\text {th }}$ term, $\left(T_{k+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{a}^{\mathrm{n}-\mathrm{k}} \mathrm{b}^{\mathrm{k}}$.

Therefore, $(r-1)^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is
$\mathrm{T}_{\mathrm{r}-1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}(\mathrm{x})^{\mathrm{n}-(\mathrm{r}-2)}(1)^{(\mathrm{r}-2)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{x}^{\mathrm{n}-\mathrm{r}+2}$
$r^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is $T_{r}={ }^{n} C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)}={ }^{n} C_{r-1} x^{n-r+1}$
$(r+1)^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{\mathrm{n}-\mathrm{r}}(1)^{r}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-r}$
Therefore, the coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$, and $(r+1)^{\text {th }}$ terms in the expansion of $(x$ $+1)^{n}$ are ${ }^{n} C_{r-2},{ }^{n} C_{r-1}$, and ${ }^{n} C_{r}$ respectively. Since these coefficients are in the ratio 1:3:5, we obtain
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{1}{3}$ and $\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{3}{5}$

$$
\begin{aligned}
\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!} & =\frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)(n-r+1)!} \\
& =\frac{r-1}{n-r+2}
\end{aligned}
$$

$\therefore \frac{\mathrm{r}-1}{\mathrm{n}-\mathrm{r}+2}=\frac{1}{3}$
$\Rightarrow 3 r-3=n-r+2$
$\Rightarrow \mathrm{n}-4 \mathrm{r}+5=0$
$\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!}=\frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!}$
$=\frac{r}{n-r+1}$
$\therefore \frac{\mathrm{r}}{\mathrm{n}-\mathrm{r}+1}=\frac{3}{5}$
$\Rightarrow 5 \mathrm{r}=3 \mathrm{n}-3 \mathrm{r}+3$
$\Rightarrow 3 \mathrm{n}-8 \mathrm{r}+3=0$
Multiplying (1) by 3 and subtracting it from (2), we obtain
$4 r-12=0$
$\Rightarrow r=3$
Putting the value of r in (1), we obtain
$n-12+5=0$
$\Rightarrow n=7$
Thus, $n=7$ and $r=3$

Question 11:

Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.

Assuming that x^{n} occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{2 n} \mathrm{C}_{\mathrm{r}}(1)^{2 n-r}(\mathrm{x})^{r}={ }^{2 n} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{r}
$$

Comparing the indices of x in x^{n} and in T_{r+1}, we obtain

$$
r=n
$$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is

$$
\begin{equation*}
{ }^{2 n} C_{n}=\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{(n!)^{2}} \tag{1}
\end{equation*}
$$

Assuming that x^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+x)^{2 n-1}$, we obtain

$$
T_{k+1}={ }^{2 n-1} C_{k}(1)^{2 n-1-k}(x)^{k}={ }^{2 n-1} C_{k}(x)^{k}
$$

Comparing the indices of x in x^{n} and T_{k+1}, we obtain

$$
k=n
$$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is

$$
\begin{align*}
{ }^{2 n-1} C_{n} & =\frac{(2 n-1)!}{n!(2 n-1-n)!}=\frac{(2 n-1)!}{n!(n-1)!} \\
& =\frac{2 n \cdot(2 n-1)!}{2 n \cdot n!(n-1)!}=\frac{(2 n)!}{2 \cdot n!n!}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] \tag{2}
\end{align*}
$$

From (1) and (2), it is observed that

$$
\begin{aligned}
& \frac{1}{2}\left({ }^{2 n} C_{n}\right)={ }^{2 n-1} C_{n} \\
& \Rightarrow{ }^{2 n} C_{n}=2\left({ }^{2 n-1} C_{n}\right)
\end{aligned}
$$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.
Hence, proved.

Question 12:

Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.

Assuming that x^{2} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+x)^{m}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{m} C_{r}(1)^{m-r}(x)^{r}={ }^{m} C_{r}(x)^{r}
$$

Comparing the indices of x in x^{2} and in T_{r+1}, we obtain
$r=2$
Therefore, the coefficient of x^{2} is ${ }^{m} \mathrm{C}_{2}$.
It is given that the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

$$
\begin{aligned}
& \therefore C_{2}=6 \\
& \Rightarrow \frac{\mathrm{~m}!}{2!(\mathrm{m}-2)!}=6 \\
& \Rightarrow \frac{\mathrm{~m}(\mathrm{~m}-1)(\mathrm{m}-2)!}{2 \times(\mathrm{m}-2)!}=6 \\
& \Rightarrow \mathrm{~m}(\mathrm{~m}-1)=12 \\
& \Rightarrow \mathrm{~m}^{2}-\mathrm{m}-12=0 \\
& \Rightarrow \mathrm{~m}^{2}-4 \mathrm{~m}+3 \mathrm{~m}-12=0 \\
& \Rightarrow \mathrm{~m}(\mathrm{~m}-4)+3(\mathrm{~m}-4)=0 \\
& \Rightarrow(\mathrm{~m}-4)(\mathrm{m}+3)=0 \\
& \Rightarrow(\mathrm{~m}-4)=0 \text { or }(\mathrm{m}+3)=0 \\
& \Rightarrow \mathrm{~m}=4 \text { or } \mathrm{m}=-3
\end{aligned}
$$

Thus, the positive value of m, for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 , is 4 .

