NCERT Miscellaneous Solutions

Question 1:

Find a, b and n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.

The first three terms of the expansion are given as 729, 7290, and 30375 respectively. Therefore, we obtain

$$
\begin{align*}
& \mathrm{T}_{1}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}-0} b^{0}=\mathrm{a}^{\mathrm{n}}=729 \tag{1}\\
& \mathrm{~T}_{2}={ }^{n} \mathrm{C}_{1} a^{n-1} b^{1}=n a^{n-1} b=7290 \tag{2}\\
& \mathrm{~T}_{3}={ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}=\frac{\mathrm{n}(\mathrm{n}-1)}{2} \mathrm{a}^{\mathrm{n}-2} b^{2}=30375 \tag{3}
\end{align*}
$$

Dividing (2) by (1), we obtain

$$
\begin{align*}
& \frac{\mathrm{na}^{\mathrm{n}-1} \mathrm{~b}}{\mathrm{a}^{\mathrm{n}}}=\frac{7290}{729} \\
& \Rightarrow \frac{\mathrm{nb}}{\mathrm{a}}=10 \tag{4}
\end{align*}
$$

Dividing (3) by (2), we obtain
$\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}}{2 \mathrm{na}^{\mathrm{n}-1} \mathrm{~b}}=\frac{30375}{7290}$
$\Rightarrow \frac{(\mathrm{n}-1) \mathrm{b}}{2 \mathrm{a}}=\frac{30375}{7290}$
$\Rightarrow \frac{(\mathrm{n}-1) \mathrm{b}}{\mathrm{a}}=\frac{30375 \times 2}{7290}=\frac{25}{3}$
$\Rightarrow \frac{\mathrm{nb}}{\mathrm{a}}-\frac{\mathrm{b}}{\mathrm{a}}=\frac{25}{3}$
$\Rightarrow 10-\frac{\mathrm{b}}{\mathrm{a}}=\frac{25}{3} \quad[$ Using (4) $]$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=10-\frac{25}{3}=\frac{5}{3}$
From (4) and (5), we obtain
$\mathrm{n} \cdot \frac{5}{3}=10$
$\Rightarrow \mathrm{n}=6$
Substituting $n=6$ in equation (1), we obtain
$a^{6}=729$
$\Rightarrow a=\sqrt[6]{729}=3$
From (5), we obtain
$\frac{\mathrm{b}}{3}=\frac{5}{3} \Rightarrow \mathrm{~b}=5$
Thus, $a=3, b=5$, and $n=6$.

Question 2:

Find a if the coefficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are equal.
Answer
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.
Assuming that x^{2} occurs in the $(r+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain $\mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}}(3)^{9-r}(\mathrm{ax})^{r}={ }^{9} \mathrm{C}_{\mathrm{r}}(3)^{9-\mathrm{r}} \mathrm{a}^{r} \mathrm{x}^{r}$
Comparing the indices of x in x^{2} and in T_{r+1}, we obtain
$r=2$
Thus, the coefficient of x^{2} is

$$
{ }^{9} \mathrm{C}_{2}(3)^{9-2} \mathrm{a}^{2}=\frac{9!}{2!7!}(3)^{7} \mathrm{a}^{2}=36(3)^{7} \mathrm{a}^{2}
$$

Assuming that x^{3} occurs in the $(k+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain $\mathrm{T}_{\mathrm{k}+1}={ }^{9} \mathrm{C}_{\mathrm{k}}(3)^{9-\mathrm{k}}(\mathrm{ax})^{\mathrm{k}}={ }^{9} \mathrm{C}_{\mathrm{k}}(3)^{9-\mathrm{k}} \mathrm{a}^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$

Comparing the indices of x in x^{3} and in T_{k+1}, we obtain
$k=3$
Thus, the coefficient of x^{3} is

$$
{ }^{9} \mathrm{C}_{3}(3)^{9-3} \mathrm{a}^{3}=\frac{9!}{3!6!}(3)^{6} \mathrm{a}^{3}=84(3)^{6} \mathrm{a}^{3}
$$

It is given that the coefficients of x^{2} and x^{3} are the same.

$$
\begin{aligned}
& 84(3)^{6} \mathrm{a}^{3}=36(3)^{7} \mathrm{a}^{2} \\
& \Rightarrow 84 \mathrm{a}=36 \times 3 \\
& \Rightarrow \mathrm{a}=\frac{36 \times 3}{84}=\frac{104}{84} \\
& \Rightarrow \mathrm{a}=\frac{9}{7}
\end{aligned}
$$

Thus, the required value of a is $\frac{9}{7}$.

Question 3:

Find the coefficient of x^{5} in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.
Answer
Using Binomial Theorem, the expressions, $(1+2 x)^{6}$ and $(1-x)^{7}$, can be expanded as

$$
\begin{aligned}
(1+2 x)^{6}= & { }^{6} \mathrm{C}_{0}+{ }^{6} \mathrm{C}_{1}(2 x)+{ }^{6} \mathrm{C}_{2}(2 x)^{2}+{ }^{6} \mathrm{C}_{3}(2 x)^{3}+{ }^{6} \mathrm{C}_{4}(2 x)^{4} \\
& +{ }^{6} \mathrm{C}_{5}(2 x)^{5}+{ }^{6} \mathrm{C}_{6}(2 x)^{6} \\
= & 1+6(2 x)+15(2 x)^{2}+20(2 x)^{3}+15(2 x)^{4}+6(2 x)^{5}+(2 x)^{6} \\
= & 1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
&(1-x)^{7}={ }^{7} \mathrm{C}_{0}-{ }^{7} \mathrm{C}_{1}(x)+{ }^{7} \mathrm{C}_{2}(x)^{2}-{ }^{7} \mathrm{C}_{3}(x)^{3}+{ }^{7} \mathrm{C}_{4}(x)^{4} \\
& \quad{ }^{7} \mathrm{C}_{5}(x)^{5}+{ }^{7} \mathrm{C}_{6}(x)^{6}-{ }^{7} \mathrm{C}_{7}(x)^{7} \\
&= 1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7} \\
& \therefore(1+2 x)^{6}(1-x)^{7} \\
&=\left(1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}\right)\left(1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}\right)
\end{aligned}
\end{aligned}
$$

The complete multiplication of the two brackets is not required to be carried out. Only those terms, which involve x^{5}, are required.
The terms containing x^{5} are

$$
\begin{aligned}
& 1\left(-21 x^{5}\right)+(12 x)\left(35 x^{4}\right)+\left(60 x^{2}\right)\left(-35 x^{3}\right)+\left(160 x^{3}\right)\left(21 x^{2}\right)+\left(240 x^{4}\right)(-7 x)+\left(192 x^{5}\right)(1) \\
& =171 x^{5}
\end{aligned}
$$

Thus, the coefficient of x^{5} in the given product is 171 .

Question 4:

If a and b are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever n is a positive integer.
[Hint: write $a^{n}=(a-b+b)^{n}$ and expand]
Answer
In order to prove that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, it has to be proved that $a^{n}-b^{n}=k(a-b)$, where k is some natural number
It can be written that, $a=a-b+b$

$$
\begin{aligned}
\therefore a^{n} & =(a-b+b)^{n}=[(a-b)+b]^{n} \\
& ={ }^{n} \mathrm{C}_{0}(a-b)^{n}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-1} b+\ldots+{ }^{n} \mathrm{C}_{n-1}(a-b) b^{n-1}+{ }^{n} \mathrm{C}_{n} b^{n} \\
& =(a-b)^{n}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-1} b+\ldots+{ }^{n} \mathrm{C}_{n-1}(a-b) b^{n-1}+b^{n} \\
\Rightarrow & a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-2} b+\ldots+{ }^{n} \mathrm{C}_{n-1} b^{n-1}\right] \\
\Rightarrow & a^{n}-b^{n}=k(a-b)
\end{aligned}
$$

where, $k=\left[(a-b)^{n-1}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-2} b+\ldots+{ }^{n} \mathrm{C}_{n-1} b^{n-1}\right]$ is a natural number
This shows that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, where n is a positive integer.

Question 5:

Evaluate ${ }^{(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}}$.
Answer
Firstly, the expression $(a+b)^{6}-(a-b)^{6}$ is simplified by using Binomial Theorem.
This can be done as

$$
\begin{aligned}
&(\mathrm{a}+\mathrm{b})={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} b^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{a}^{1} \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6}{ }^{6} \\
&=\mathrm{a}^{6}+6 \mathrm{a}^{5} \mathrm{~b}+15 \mathrm{a}^{4} \mathrm{~b}^{2}+20 \mathrm{a}^{3} \mathrm{~b}^{3}+15 \mathrm{a}^{2} \mathrm{~b}^{4}+6 \mathrm{ab}^{5}+\mathrm{b}^{6} \\
&(\mathrm{a}-\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}-{ }^{6} \mathrm{C}_{5} \mathrm{a}^{5} \mathrm{~b}^{6}+{ }_{6} \mathrm{C}_{6}{ }^{6} \\
&=\mathrm{a}^{6}-6 \mathrm{a}^{5} \mathrm{~b}+15 \mathrm{a}^{4} \mathrm{~b}^{2}-20 \mathrm{a}^{3} \mathrm{~b}^{3}+15 \mathrm{a}^{2} \mathrm{~b}^{4}-6 \mathrm{ab}^{5}+\mathrm{b}^{6} \\
& \therefore(\mathrm{a}+\mathrm{b})^{6}-(\mathrm{a}-\mathrm{b})^{6}=2\left[6 \mathrm{a}^{5} \mathrm{~b}+20 \mathrm{a}^{3} \mathrm{~b}^{3}+6 \mathrm{ab}^{5}\right]
\end{aligned}
$$

Putting $\mathrm{a}=\sqrt{3}$ and $\mathrm{b}=\sqrt{2}$, we obtain

$$
\begin{aligned}
(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6} & =2\left[6(\sqrt{3})^{5}(\sqrt{2})+20(\sqrt{3})^{3}(\sqrt{2})^{3}+6(\sqrt{3})(\sqrt{2})^{5}\right] \\
& =2[54 \sqrt{6}+120 \sqrt{6}+24 \sqrt{6}] \\
& =2 \times 198 \sqrt{6} \\
& =396 \sqrt{6}
\end{aligned}
$$

Question 6:

Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$.
Answer
Firstly, the expression $(x+y)^{4}+(x-y)^{4}$ is simplified by using Binomial Theorem.
This can be done as

$$
\begin{aligned}
& (\mathrm{x}+\mathrm{y})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{x}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{x}^{3} \mathrm{y}+{ }^{4} \mathrm{C}_{2} \mathrm{x}^{2} \mathrm{y}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{xy}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{y}^{4} \\
& =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& (x-y)^{4}={ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}-{ }^{4} C_{3} x^{3}{ }^{3}+{ }^{4} C_{4} y^{4} \\
& =x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4} \\
& \therefore(x+y)^{4}+(x-y)^{4}=2\left(x^{4}+6 x^{2} y^{2}+y^{4}\right)
\end{aligned}
$$

Putting $x=a^{2}$ and $y=\sqrt{a^{2}-1}$, we obtain

$$
\begin{aligned}
\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4} & =2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+\left(\sqrt{a^{2}-1}\right)^{4}\right] \\
& =2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right] \\
& =2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right] \\
& =2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right] \\
& =2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2
\end{aligned}
$$

Question 7:

Find an approximation of $(0.99)^{5}$ using the first three terms of its expansion.
Answer

$$
0.99=1-0.01
$$

$$
\begin{aligned}
\therefore(0.99)^{5} & =(1-0.01)^{5} \\
& ={ }^{5} \mathrm{C}_{0}(1)^{5}-{ }^{5} \mathrm{C}_{1}(1)^{4}(0.01)+{ }^{5} \mathrm{C}_{2}(1)^{3}(0.01)^{2} \\
& =1-5(0.01)+10(0.01)^{2} \\
& =1-0.05+0.001 \\
& =1.001-0.05 \\
& =0.951
\end{aligned}
$$

Thus, the value of $(0.99)^{5}$ is approximately 0.951 .

Question 8:

Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in
the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$
Answer
In the expansion, $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$,
Fifth term from the beginning $={ }^{n} \mathrm{C}_{4} \mathrm{a}^{\mathrm{n}-4} \mathrm{~b}^{4}$
Fifth term from the end $={ }^{n} C_{n-4} a^{4} b^{n-4}$
Therefore, it is evident that in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$, the fifth term from the
beginning is ${ }^{n} C_{4}(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}$ and the fifth term from the end is ${ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}$.

$$
\begin{align*}
& { }^{n} C_{4}(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}={ }^{n} C_{4} \frac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}} \cdot \frac{1}{3}={ }^{n} C_{4} \frac{(\sqrt[4]{2})^{n}}{2} \cdot \frac{1}{3}=\frac{n!}{6 \cdot 4!(n-4)!}(\sqrt[4]{2})^{n} \tag{1}\\
& { }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}={ }^{n} C_{n-4} \cdot 2 \cdot \frac{(\sqrt[4]{3})^{4}}{(\sqrt[4]{3})^{n}}={ }^{n} C_{n-4} \cdot 2 \cdot \frac{3}{(\sqrt[4]{3})^{n}}=\frac{6 n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[4]{3})^{n}} \tag{2}
\end{align*}
$$

It is given that the ratio of the fifth term from the beginning to the fifth term from the end is $\sqrt{6}: 1$. Therefore, from (1) and (2), we obtain
$\frac{n!}{6.4!(n-4)!}(\sqrt[4]{2})^{n}: \frac{6 n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$
$\Rightarrow \frac{(\sqrt[4]{2})^{\mathrm{n}}}{6}: \frac{6}{(\sqrt[4]{3})^{\mathrm{n}}}=\sqrt{6}: 1$
$\Rightarrow \frac{(\sqrt[4]{2})^{n}}{6} \times \frac{(\sqrt[4]{3})^{n}}{6}=\sqrt{6}$
$\Rightarrow(\sqrt[4]{6})^{\mathrm{n}}=36 \sqrt{6}$
$\Rightarrow 6^{\frac{n}{4}}=6^{\frac{3}{2}}$
$\Rightarrow \frac{\mathrm{n}}{4}=\frac{5}{2}$
$\Rightarrow \mathrm{n}=4 \times \frac{5}{2}=10$
Thus, the value of n is 10 .

Question 9:

Expand using Binomial Theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$.
Answer
Using Binomial Theorem, the given expression $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}$ can be expanded as

$$
\begin{align*}
& {\left[\left(1+\frac{x}{2}\right)-\frac{2}{x}\right]^{4}} \\
& ={ }^{4} C_{0}\left(1+\frac{x}{2}\right)^{4}-{ }^{4} C_{1}\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+{ }^{4} C_{2}\left(1+\frac{x}{2}\right)^{2}\left(\frac{2}{x}\right)^{2}-{ }^{4} C_{3}\left(1+\frac{x}{2}\right)\left(\frac{2}{x}\right)^{3}+{ }^{4} C_{4}\left(\frac{2}{x}\right)^{4} \\
& =\left(1+\frac{x}{2}\right)^{4}-4\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+6\left(1+x+\frac{x^{2}}{4}\right)\left(\frac{4}{x^{2}}\right)-4\left(1+\frac{x}{2}\right)\left(\frac{8}{x^{3}}\right)+\frac{16}{x^{4}} \\
& =\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{24}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}-\frac{16}{x^{2}}+\frac{16}{x^{4}} \\
& =\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \tag{1}
\end{align*}
$$

Again by using Binomial Theorem, we obtain

$$
\begin{align*}
\left(1+\frac{x}{2}\right)^{4} & ={ }^{4} C_{0}(1)^{4}+{ }^{4} C_{1}(1)^{3}\left(\frac{x}{2}\right)+{ }^{4} C_{2}(1)^{2}\left(\frac{x}{2}\right)^{2}+{ }^{4} \mathrm{C}_{3}(1)^{1}\left(\frac{x}{2}\right)^{3}+{ }^{4} \mathrm{C}_{4}\left(\frac{\mathrm{x}}{2}\right)^{4} \\
& =1+4 \times \frac{x}{2}+6 \times \frac{x^{2}}{4}+4 \times \frac{x^{3}}{8}+\frac{x^{4}}{16} \\
& =1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16} \tag{2}\\
\left(1+\frac{x}{2}\right)^{3} & ={ }^{3} C_{0}(1)^{3}+{ }^{3} C_{1}(1)^{2}\left(\frac{x}{2}\right)+{ }^{3} C_{2}(1)\left(\frac{x}{2}\right)^{2}+{ }^{3} C_{3}\left(\frac{x}{2}\right)^{3} \\
& =1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8}
\end{align*}
$$

From (1), (2), and (3), we obtain

$$
\begin{aligned}
& {\left[\left(1+\frac{x}{2}\right)-\frac{2}{x}\right]^{4}} \\
& =1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}\left(1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8}\right)+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \\
& =1+2 x+\frac{3}{2} x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}-12-6 x-x^{2}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \\
& =\frac{16}{x}+\frac{8}{x^{2}}-\frac{32}{x^{3}}+\frac{16}{x^{4}}-4 x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-5
\end{aligned}
$$

Find the expansion of $\left(3 \mathrm{x}^{2}-2 \mathrm{ax}+3 \mathrm{a}^{2}\right)^{3}$ using binomial theorem.
Answer
Using Binomial Theorem, the given expression $\left(3 \mathrm{x}^{2}-2 \mathrm{ax}+3 \mathrm{a}^{2}\right)^{3}$ can be expanded as

$$
\begin{align*}
& {\left[\left(3 x^{2}-2 a \mathrm{ax}\right)+3 \mathrm{a}^{2}\right]^{3}} \\
& ={ }^{3} \mathrm{C}_{0}\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+{ }^{3} \mathrm{C}_{1}\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{2}\left(3 \mathrm{a}^{2}\right)+{ }^{3} \mathrm{C}_{2}\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)\left(3 \mathrm{a}^{2}\right)^{2}+{ }^{3} \mathrm{C}_{3}\left(3 \mathrm{a}^{2}\right)^{3} \\
& =\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+3\left(9 \mathrm{x}^{4}-12 \mathrm{ax}^{3}+4 \mathrm{a}^{2} \mathrm{x}^{2}\right)\left(3 \mathrm{a}^{2}\right)+3\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)\left(9 \mathrm{a}^{4}\right)+27 \mathrm{a}^{6} \\
& =\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+81 \mathrm{a}^{2} \mathrm{x}^{4}-108 \mathrm{a}^{3} \mathrm{x}^{3}+36 \mathrm{a}^{4} \mathrm{x}^{2}+81 \mathrm{a}^{4} \mathrm{x}^{2}-54 \mathrm{a}^{5} \mathrm{x}+27 \mathrm{a}^{6} \\
& =\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+81 \mathrm{a}^{2} \mathrm{x}^{4}-108 \mathrm{a}^{3} \mathrm{x}^{3}+117 \mathrm{a}^{4} \mathrm{x}^{2}-54 \mathrm{a}^{5} \mathrm{x}+27 \mathrm{a}^{6} \tag{1}
\end{align*}
$$

Again by using Binomial Theorem, we obtain

$$
\begin{align*}
& \left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3} \\
& ={ }^{3} \mathrm{C}_{0}\left(3 \mathrm{x}^{2}\right)^{3}-{ }^{3} \mathrm{C}_{1}\left(3 \mathrm{x}^{2}\right)^{2}(2 \mathrm{ax})+{ }^{3} \mathrm{C}_{2}\left(3 \mathrm{x}^{2}\right)(2 \mathrm{ax})^{2}-{ }^{3} \mathrm{C}_{3}(2 \mathrm{ax})^{3} \\
& =27 \mathrm{x}^{6}-3\left(9 \mathrm{x}^{4}\right)(2 \mathrm{ax})+3\left(3 \mathrm{x}^{2}\right)\left(4 \mathrm{a}^{2} \mathrm{x}^{2}\right)-8 \mathrm{a}^{3} \mathrm{x}^{3} \\
& =27 \mathrm{x}^{6}-54 \mathrm{ax} 5+36 \mathrm{a}^{2} \mathrm{x}^{4}-8 \mathrm{a}^{3} \mathrm{x}^{3} \tag{2}
\end{align*}
$$

From (1) and (2), we obtain

$$
\begin{aligned}
& \left(3 x^{2}-2 a x+3 a^{2}\right)^{3} \\
& =27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6} \\
& =27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}
\end{aligned}
$$

