Exercise 9.1

Question 1:

Determine order and degree(if defined) of differential equation $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$
Answer
$\frac{d^{4} y}{d x^{4}}+\sin \left(y^{m}\right)=0$
$\Rightarrow y^{\prime \prime \prime \prime}+\sin \left(y^{\prime \prime \prime}\right)=0$
The highest order derivative present in the differential equation is $y^{y^{\prime \prime \prime}}$. Therefore, its order is four.

The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.

Question 2:

Determine order and degree(if defined) of differential equation $y^{\prime}+5 y=0$
Answer
The given differential equation is:

$$
y^{\prime}+5 y=0
$$

The highest order derivative present in the differential equation is y^{\prime}. Therefore, its order is one.

It is a polynomial equation in y^{\prime}. The highest power raised to y^{\prime} is 1 . Hence, its degree is one.

Question 3:

Determine order and degree(if defined) of differential equation $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$ Answer
$\left(\frac{d s}{d t}\right)^{4}+3 \frac{d^{2} s}{d t^{2}}=0$

The highest order derivative present in the given differential equation is $\frac{d^{2} s}{d t^{2}}$. Therefore, its order is two.

It is a polynomial equation in $\frac{d^{2} s}{d t^{2}}$ and $\frac{d s}{d t}$. The power raised to $\frac{d^{2} s}{d t^{2}}$ is 1 .
Hence, its degree is one.

Question 4:

Determine order and degree(if defined) of differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$
Answer
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$
The highest order derivative present in the given differential equation is $\frac{d^{2} y}{d x^{2}}$. Therefore, its order is 2.

The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.

Question 5:

Determine order and degree(if defined) of differential equation $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$ Answer
$\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}-\cos 3 x-\sin 3 x=0$
The highest order derivative present in the differential equation is $\frac{d^{2} y}{d x^{2}}$. Therefore, its order is two.

It is a polynomial equation in $\frac{d^{2} y}{d x^{2}}$ and the power raised to $\frac{d^{2} y}{d x^{2}}$ is 1 .
Hence, its degree is one.

Question 6:

Determine order and degree(if defined) of differential equation
$\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$
Answer
$\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)+y^{5}=0$
The highest order derivative present in the differential equation is $y^{y^{\prime \prime \prime}}$. Therefore, its order is three.
The given differential equation is a polynomial equation in $y^{\prime \prime \prime}, y^{\prime \prime}$, and y^{\prime}.
The highest power raised to $y^{y^{\prime \prime \prime}}$ is 2 . Hence, its degree is 2 .

Question 7:

Determine order and degree(if defined) of differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$
Answer

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0
$$

The highest order derivative present in the differential equation is $y^{y^{\prime \prime \prime}}$. Therefore, its order is three.
It is a polynomial equation in $y^{\prime \prime \prime}, y^{\prime \prime}$ and y^{\prime}. The highest power raised to $y^{y^{\prime \prime \prime}}$ is 1 . Hence, its degree is 1 .

Question 8:

Determine order and degree(if defined) of differential equation $y^{\prime}+y=e^{x}$
Answer
$y^{\prime}+y=e^{x}$
$\Rightarrow y^{\prime}+y-e^{x}=0$

The highest order derivative present in the differential equation is y^{\prime}. Therefore, its order is one.

The given differential equation is a polynomial equation in y^{\prime} and the highest power raised to y^{\prime} is one. Hence, its degree is one.

Question 9:

Determine order and degree(if defined) of differential equation $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$
Answer

$$
y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0
$$

The highest order derivative present in the differential equation is $y^{\prime \prime}$. Therefore, its order is two.

The given differential equation is a polynomial equation in $y^{\prime \prime}$ and y^{\prime} and the highest power raised to $y^{\prime \prime}$ is one.
Hence, its degree is one.

Question 10:

Determine order and degree(if defined) of differential equation $y^{\prime \prime}+2 y^{\prime}+\sin y=0$
Answer

$$
y^{\prime \prime}+2 y^{\prime}+\sin y=0
$$

The highest order derivative present in the differential equation is $y^{\prime \prime}$. Therefore, its order is two.
This is a polynomial equation in $y^{\prime \prime}$ and y^{\prime} and the highest power raised to $y^{\prime \prime}$ is one. Hence, its degree is one.

Question 11:

The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$ is
(A) 3 (B) 2 (C) 1 (D) not defined

Answer
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$
The given differential equation is not a polynomial equation in its derivatives. Therefore, its degree is not defined.
Hence, the correct answer is D.

Question 12:

The order of the differential equation
$2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is
(A) 2 (B) 1 (C) 0 (D) not defined

Answer
$2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$
The highest order derivative present in the given differential equation is $\frac{d^{2} y}{d x^{2}}$. Therefore, its order is two.

Hence, the correct answer is A.

