Question 1:
$\frac{x}{a}+\frac{y}{b}=1$
Answer
$\frac{x}{a}+\frac{y}{b}=1$
Differentiating both sides of the given equation with respect to x, we get:
$\frac{1}{a}+\frac{1}{b} \frac{d y}{d x}=0$
$\Rightarrow \frac{1}{a}+\frac{1}{b} y^{\prime}=0$
Again, differentiating both sides with respect to x, we get:
$0+\frac{1}{b} y^{\prime \prime}=0$
$\Rightarrow \frac{1}{b} y^{\prime \prime}=0$
$\Rightarrow y^{\prime \prime}=0$
Hence, the required differential equation of the given curve is $y^{\prime \prime}=0$.

Question 2:
$y^{2}=a\left(b^{2}-x^{2}\right)$
Answer
$y^{2}=a\left(b^{2}-x^{2}\right)$
Differentiating both sides with respect to x, we get:
$2 y \frac{d y}{d x}=a(-2 x)$
$\Rightarrow 2 y y^{\prime}=-2 a x$
$\Rightarrow y y^{\prime}=-a x$
Again, differentiating both sides with respect to x, we get:
$y^{\prime} \cdot y^{\prime}+y y^{\prime \prime}=-a$
$\Rightarrow\left(y^{\prime}\right)^{2}+y y^{\prime \prime}=-a$
Dividing equation (2) by equation (1), we get:
$\frac{\left(y^{\prime}\right)^{2}+y y^{\prime \prime}}{y y^{\prime}}=\frac{-a}{-a x}$
$\Rightarrow x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime \prime}=0$
This is the required differential equation of the given curve.

Question 3:

$y=a e^{3 x}+b e^{-2 x}$
Answer
$y=a e^{3 x}+b e^{-2 x}$
Differentiating both sides with respect to x, we get:
$y^{\prime}=3 a e^{3 x}-2 b e^{-2 x}$
Again, differentiating both sides with respect to x, we get:
$y^{\prime \prime}=9 a e^{3 x}+4 b e^{-2 x}$
Multiplying equation (1) with (2) and then adding it to equation (2), we get:
$\left(2 a e^{3 x}+2 b e^{-2 x}\right)+\left(3 a e^{3 x}-2 b c^{-2 x}\right)=2 y+y^{\prime}$
$\Rightarrow 5 a e^{3 x}=2 y+y^{\prime}$
$\Rightarrow a e^{3 x}=\frac{2 y+y^{\prime}}{5}$
Now, multiplying equation (1) with equation (3) and subtracting equation (2) from it, we get:
$\left(3 a e^{3 x}+3 b e^{-2 x}\right)-\left(3 a e^{3 x}-2 b e^{-2 x}\right)=3 y-y^{\prime}$
$\Rightarrow 5 b e^{-2 x}=3 y-y^{\prime}$
$\Rightarrow b e^{-2 x}=\frac{3 y-y^{\prime}}{5}$
Substituting the values of $a e^{3 x}$ and $b e^{-2 x}$ in equation (3), we get:

$$
\begin{aligned}
& y^{\prime \prime}=9 \cdot \frac{\left(2 y+y^{\prime}\right)}{5}+4 \frac{\left(3 y-y^{\prime}\right)}{5} \\
& \Rightarrow y^{\prime \prime}=\frac{18 y+9 y^{\prime}}{5}+\frac{12 y-4 y^{\prime}}{5} \\
& \Rightarrow y^{\prime \prime}=\frac{30 y+5 y^{\prime}}{5} \\
& \Rightarrow y^{\prime \prime}=6 y+y^{\prime} \\
& \Rightarrow y^{\prime \prime}-y^{\prime}-6 y=0
\end{aligned}
$$

This is the required differential equation of the given curve.

Question 4:
$y=e^{2 x}(a+b x)$
Answer
$y=e^{2 x}(a+b x)$
Differentiating both sides with respect to x, we get:
$y^{\prime}=2 e^{2 x}(a+b x)+e^{2 x} \cdot b$
$\Rightarrow y^{\prime}=e^{2 x}(2 a+2 b x+b)$
Multiplying equation (1) with equation (2) and then subtracting it from equation (2), we get:
$y^{\prime}-2 y=e^{2 x}(2 a+2 b x+b)-e^{2 x}(2 a+2 b x)$
$\Rightarrow y^{\prime}-2=b e^{2 x}$
Differentiating both sides with respect to x, we get:
$y^{\prime \prime} k-2 y^{\prime}=2 b e^{2 x}$
Dividing equation (4) by equation (3), we get:
$\frac{y^{\prime \prime}-2 y^{\prime}}{y^{\prime}-2 y}=2$
$\Rightarrow y^{\prime \prime}-2 y^{\prime}=2 y^{\prime}-4 y$
$\Rightarrow y^{\prime \prime}-4 y^{\prime}+4 y=0$
This is the required differential equation of the given curve.

Question 5:
$y=e^{x}(a \cos x+b \sin x)$
Answer
$y=e^{x}(a \cos x+b \sin x)$
Differentiating both sides with respect to x, we get:
$y^{\prime}=e^{x}(a \cos x+b \sin x)+e^{x}(-a \sin x+b \cos x)$
$\Rightarrow y^{\prime}=e^{x}[(a+b) \cos x-(a-b) \sin x]$
Again, differentiating with respect to x, we get:

$$
\begin{align*}
& y^{\prime \prime}=e^{x}[(a+b) \cos x-(a-b) \sin x]+e^{x}[-(a+b) \sin x-(a-b) \cos x] \\
& y^{\prime \prime}=e^{x}[2 b \cos x-2 a \sin x] \\
& y^{\prime \prime}=2 e^{x}(b \cos x-a \sin x) \\
& \Rightarrow \frac{y^{\prime \prime}}{2}=e^{x}(b \cos x-a \sin x) \tag{3}
\end{align*}
$$

Adding equations (1) and (3), we get:
$y+\frac{y^{\prime \prime}}{2}=e^{x}[(a+b) \cos x-(a-b) \sin x]$
$\Rightarrow y+\frac{y^{\prime \prime}}{2}=y^{\prime}$
$\Rightarrow 2 y+y^{\prime \prime}=2 y^{\prime}$
$\Rightarrow y^{\prime \prime}-2 y^{\prime}+2 y=0$
This is the required differential equation of the given curve.

Question 6:

Form the differential equation of the family of circles touching the y-axis at the origin.
Answer
The centre of the circle touching the y-axis at origin lies on the x-axis.
Let $(a, 0)$ be the centre of the circle.
Since it touches the y-axis at origin, its radius is a.
Now, the equation of the circle with centre $(a, 0)$ and radius (a) is
$(x-a)^{2}+y^{2}=a^{2}$.
$\Rightarrow x^{2}+y^{2}=2 a x$

Differentiating equation (1) with respect to x, we get:
$2 x+2 y y^{\prime}=2 a$
$\Rightarrow x+y y^{\prime}=a$
Now, on substituting the value of a in equation (1), we get:
$x^{2}+y^{2}=2\left(x+y y^{\prime}\right) x$
$\Rightarrow x^{2}+y^{2}=2 x^{2}+2 x y y^{\prime}$
$\Rightarrow 2 x y y^{\prime}+x^{2}=y^{2}$
This is the required differential equation.

Question 7:

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Answer
The equation of the parabola having the vertex at origin and the axis along the positive y-axis is:
$x^{2}=4 a y$

Differentiating equation (1) with respect to x, we get:
$2 x=4 a y^{\prime}$
Dividing equation (2) by equation (1), we get:
$\frac{2 x}{x^{2}}=\frac{4 a y^{\prime}}{4 a y}$
$\Rightarrow \frac{2}{x}=\frac{y^{\prime}}{y}$
$\Rightarrow x y^{\prime}=2 y$
$\Rightarrow x y^{\prime}-2 y=0$
This is the required differential equation.

Question 8:

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Answer
The equation of the family of ellipses having foci on the y-axis and the centre at origin is as follows:
$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 \quad$.

Differentiating equation (1) with respect to x, we get:
$\frac{2 x}{b^{2}}+\frac{2 y y^{\prime}}{b^{2}}=0$
$\Rightarrow \frac{x}{b^{2}}+\frac{y y^{\prime}}{a^{2}}=0$
Again, differentiating with respect to x, we get:
$\frac{1}{b^{2}}+\frac{y^{\prime} \cdot y^{\prime}+y \cdot y^{\prime \prime}}{a^{2}}=0$
$\Rightarrow \frac{1}{b^{2}}+\frac{1}{a^{2}}\left(y^{\prime 2}+y y^{\prime \prime}\right)=0$
$\Rightarrow \frac{1}{b^{2}}=-\frac{1}{a^{2}}\left(y^{\prime 2}+y y^{\prime \prime}\right)$
Substituting this value in equation (2), we get:
$x\left[-\frac{1}{a^{2}}\left(\left(y^{\prime}\right)^{2}+y y^{\prime \prime}\right)\right]+\frac{y y^{\prime}}{a^{2}}=0$
$\Rightarrow-x\left(y^{\prime}\right)^{2}-x y y^{\prime \prime}+y y^{\prime}=0$
$\Rightarrow x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime}=0$
This is the required differential equation.

Question 9:

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Answer
The equation of the family of hyperbolas with the centre at origin and foci along the x axis is:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Differentiating both sides of equation (1) with respect to x, we get:
$\frac{2 x}{a^{2}}-\frac{2 y y^{\prime}}{b^{2}}=0$
$\Rightarrow \frac{x}{a^{2}}-\frac{y y^{\prime}}{b^{2}}=0$
Again, differentiating both sides with respect to x, we get:
$\frac{1}{a^{2}}-\frac{y^{\prime} \cdot y^{\prime}+y y^{\prime \prime}}{b^{2}}=0$
$\Rightarrow \frac{1}{a^{2}}=\frac{1}{b^{2}}\left(\left(y^{\prime}\right)^{2}+y y^{\prime \prime}\right)$
Substituting the value of $\frac{1}{a^{2}}$ in equation (2), we get:
$\frac{x}{b^{2}}\left(\left(y^{\prime}\right)^{2}+y y^{\prime \prime}\right)-\frac{y y^{\prime}}{b^{2}}=0$
$\Rightarrow x\left(y^{\prime}\right)^{2}+x y y^{\prime \prime}-y y^{\prime}=0$
$\Rightarrow x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime}=0$

This is the required differential equation.

Question 10:

Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

Answer
Let the centre of the circle on y-axis be $(0, b)$.
The differential equation of the family of circles with centre at $(0, b)$ and radius 3 is as follows:

$$
\begin{align*}
& x^{2}+(y-b)^{2}=3^{2} \\
& \Rightarrow x^{2}+(y-b)^{2}=9 \tag{1}
\end{align*}
$$

Differentiating equation (1) with respect to x, we get:
$2 x+2(y-b) \cdot y^{\prime}=0$
$\Rightarrow(y-b) \cdot y^{\prime}=-x$
$\Rightarrow y-b=\frac{-x}{y^{\prime}}$
Substituting the value of $(y-b)$ in equation (1), we get:
$x^{2}+\left(\frac{-x}{y^{\prime}}\right)^{2}=9$
$\Rightarrow x^{2}\left[1+\frac{1}{\left(y^{\prime}\right)^{2}}\right]=9$
$\Rightarrow x^{2}\left(\left(y^{\prime}\right)^{2}+1\right)=9\left(y^{\prime}\right)^{2}$
$\Rightarrow\left(x^{2}-9\right)\left(y^{\prime}\right)^{2}+x^{2}=0$
This is the required differential equation.

Question 11:

Which of the following differential equations has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution?
A. $\frac{d^{2} y}{d x^{2}}+y=0$
B. $\frac{d^{2} y}{d x^{2}}-y=0$
C. $\frac{d^{2} y}{d x^{2}}+1=0$
D. $\frac{d^{2} y}{d x^{2}}-1=0$

Answer
The given equation is:
$y=c_{1} e^{x}+c_{2} e^{-x}$
Differentiating with respect to x, we get:
$\frac{d y}{d x}=c_{1} e^{x}-c_{2} e^{-x}$
Again, differentiating with respect to x, we get:
$\frac{d^{2} y}{d x^{2}}=c_{1} e^{x}+c_{2} e^{-x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}-y=0$
This is the required differential equation of the given equation of curve.
Hence, the correct answer is B.

Question 12:

Which of the following differential equation has $y=x$ as one of its particular solution?
A. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=x$
B. $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=x$
C. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=0$
D. $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=0$

Answer
The given equation of curve is $y=x$.
Differentiating with respect to x, we get:
$\frac{d y}{d x}=1$
Again, differentiating with respect to x, we get:
$\frac{d^{2} y}{d x^{2}}=0$
Now, on substituting the values of $y, \frac{d^{2} y}{d x^{2}}$, and $\frac{d y}{d x}$ from equation (1) and (2) in each of the given alternatives, we find that only the differential equation given in alternative \mathbf{C} is correct.

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y & =0-x^{2} \cdot 1+x \cdot x \\
& =-x^{2}+x^{2} \\
& =0
\end{aligned}
$$

Hence, the correct answer is C.

