Ex-10.1

Q1. How many tangents can a circle have?
Sol. There can be infinitely many tangents to a circle.
Q2. Fill in the blanks :
(i) A tangent to a circle intersects it in.....point (s).
(ii) A line intersecting a circle in two points is called a. \qquad
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called. \qquad
Sol.
(i) One
(ii) Secant
(iii) Two
(iv) Point of contact.

Q3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is.
(1) 12 cm
(2) 13 cm
(3) 8.5 cm
(4) $\sqrt{119} \mathrm{~cm}$

Sol. O is the centre of the circle. The radius of the circle is 5 cm .
PQ is tangent to the circle at P . Then

$$
\mathrm{OP}=5 \mathrm{~cm} \text { and } \angle \mathrm{OPQ}=90^{\circ} .
$$

We are given that $\mathrm{OQ}=12 \mathrm{~cm}$.

By Pythagoras Theorem, we have

$$
\begin{aligned}
\mathrm{PQ}^{2} & =\mathrm{OQ}^{2}-\mathrm{OP}^{2} \\
& =(12)^{2}-(5)^{2}=144-25=119 \\
\Rightarrow \mathrm{PQ} & =\sqrt{119} \mathrm{~cm}
\end{aligned}
$$

Hence, the correction option is (D).

Q4. Draw a circle and two lines parallel to a given line such that one is tangent and other a secant to the circle.

Sol. We have the required figure, as shown

Here, ℓ is the given line and a circle with centre O is drawn.
The line n is drawn which is parallel to ℓ and tangent to the circle. Also, m is drawn parallel to line ℓ and is a secant to the circle.

