Ex-7.3

Q1. Find the area of the triangle whose vertices are :
(i) $(2,3),(-1,0),(2,-4)$
(ii) $(-5,-1),(3,-5),(5,2)$

Sol. (i) Let the vertices of the triangles be $\mathrm{A}(2,3), \mathrm{B}(-1,0)$ and $\mathrm{C}(2,-4)$
Here $\mathrm{x}_{1}=2, \mathrm{y}_{1}=3$,

$$
\begin{aligned}
& x_{2}=-1, y_{2}=0 \\
& x_{3}=2, y_{3}=-4
\end{aligned}
$$

\because Area of a Δ

$$
=\frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]
$$

\therefore Area of a Δ

$$
\begin{aligned}
& =\frac{1}{2}[2\{0-(-4)+(-1)\{-4-(3)\}+2\{3-0\}] \\
& =\frac{1}{2}[2(0+4)+(-1)(-4-3)+2(3)] \\
& =\frac{1}{2}[8+7+6]=\frac{1}{2}[21]=\frac{21}{2} \text { sq.units }
\end{aligned}
$$

(ii) $\mathrm{A}(-5,-1), \mathrm{B}(3,-5), \mathrm{C}(5,2)$ are the vertices of the given triangle.
$x_{1}=-5, x_{2}=3, x_{3}=5 ; y_{1}=-1, y_{2}=-5, y_{3}=2$.
Area of the $\triangle \mathrm{ABC}$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[-5 \times(-5-2)+3 \times(2+1)+5 \times(-1+5)]$
$=\frac{1}{2}[35+9+20]=\frac{1}{2}[64]=32$ sq. units
Q2. In each of the following find the value of ' k ', for which the points are collinear.
(i) $(7,-2),(5,1),(3, \mathrm{k})$
(ii) $(8,1),(\mathrm{k}-4),(2,-5)$.

Sol. The given three points will be collinear if the Δ formed by them has equal to zero area.
(i) Let $\mathrm{A}(7,-2), \mathrm{B}(5,1)$ and $\mathrm{C}(3, \mathrm{k})$ be the vertices of a triangle.
\therefore The given points will be collinear, if

$$
\text { ar }(\triangle \mathrm{ABC})=0
$$

or $7(1-k)+5(k+2)+3(-2-1)=0$
$\Rightarrow 7-7 \mathrm{k}+5 \mathrm{k}+10+(-6)-3=0$
$\Rightarrow 17-9+5 \mathrm{k}-7 \mathrm{k}=0$
$\Rightarrow 8-2 \mathrm{k}=0 \Rightarrow 2 \mathrm{k}=8$
$\Rightarrow \mathrm{k}=\frac{8}{2}=4$
The required value of $k=4$.
(ii) $\mathrm{A}(8,1), \mathrm{B}(\mathrm{k},-4), \mathrm{C}(2,-5)$ are the given points.

$$
\begin{aligned}
& x_{1}=8, x_{2}=k, x_{3}=2 \\
& y_{1}=1, y_{2}=-4, y_{3}=-5
\end{aligned}
$$

the condition for the three points to be collinear is
$x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
$8 \times(-4+5)+k \times(-5-1)+2 \times(1+4)=0$
i.e. $\quad 8-6 k+10=0$, i.e., $6 k=18$, i.e., $k=3$

Q3. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are $(0,-1),(2,1)$ and $(0,3)$. Find the ratio of this area of the area of the given triangle.
Sol. Let the vertices of the triangle be $\mathrm{A}(0,-1), \mathrm{B}(2,1)$ and $\mathrm{C}(0,3)$.
Let D, E and F be the mid-points of the sides BC, CA and AB respectively. Then :
Coordinates of D are

$$
\left(\frac{2+0}{2}, \frac{1+3}{2}\right) \text { i.e., }\left(\frac{2}{2}, \frac{4}{2}\right) \text { or }(1,2)
$$

Coordinates of E are $\left(\frac{0+0}{2}, \frac{3+(-1)}{2}\right)$ i.e., $(0,1)$
Coordinates of F are $\left(\frac{2+0}{2}, \frac{1+(-1)}{2}\right)$ i.e., (1,0)

Now, $\operatorname{ar}(\triangle \mathrm{ABC})$

$$
\begin{aligned}
& =\frac{1}{2}[0(1-3)+2\{3-(-1)\}+0(-1-1)] \\
& =\frac{1}{2}[0(-2)+8+0(-2)] \\
& =\frac{1}{2}[0+8+0]=\frac{1}{2} \times 8=4 \text { sq. units }
\end{aligned}
$$

Now, ar $(\triangle \mathrm{DEF})=\frac{1}{2}[1(1-0)+0(0-2)+1(2-1)]$

$$
=\frac{1}{2}[1(1)+0+1(1)]
$$

$=\frac{1}{2}[1+0+1]=\frac{1}{2} \times 2=1$ sq. unit
$\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{4}$
$\therefore \operatorname{ar}(\triangle \mathrm{DEF}): \operatorname{ar}(\triangle \mathrm{ABC})=1: 4$.
Q4. Find the area of the quadrilateral whose vertices taken in order are
$(-4,-2),(-3,-5),(3,-2)$ and $(2,3)$.
Sol. Join A and C. The given points are
$\mathrm{A}(-4,-2), \mathrm{B}(-3,-5), \mathrm{C}(3,-2)$ and $\mathrm{D}(2,3)$

Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}[(-4)(-5+2)-3(-2+2)+3(-2+5)]$
$=\frac{1}{2}[12+0+9]=\frac{21}{2}=10.5$ sq. units
Area of $\triangle \mathrm{ACD}$
$=\frac{1}{2}[(-4)(-2-3)+3(3+2)+2(-2+2)]$
$=\frac{1}{2}\left[20+15 \left\lvert\,=\frac{35}{2}=17.5\right.\right.$ sq. units.
Area of quadrilateral ABCD
$=\operatorname{ar} .(\triangle \mathrm{ABC})+\operatorname{ar} .(\triangle \mathrm{ACD})$
$=(10.5+17.5)$ sq. units $=28$ sq. units

Q5. A median of a triangle divides it into two triangles of equal areas. Verify this result for $\triangle \mathrm{ABC}$ whose vertices are $\mathrm{A}(4,-6), \mathrm{B}(3,-2)$ and $\mathrm{C}(5,2)$
Sol. Here, the vertices of the triangles are $\mathrm{A}(4,-6), \mathrm{B}(3,-2)$ and $\mathrm{C}(5,2)$.
Let D be the midpoint of BC .
\therefore The coordinates of the mid point D are

$$
\left\{\frac{3+5}{2}, \frac{-2+2}{2}\right\} \text { or }(4,0) .
$$

Since, AD divides the triangle ABC into two parts i.e., $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,

Now, ar($\triangle \mathrm{ABD})$
$=\frac{1}{2}[4\{(-2)-0\}+3(0+6)+4(-6+2)]$
$=\frac{1}{2}[(-8)+18+(-16)]=\frac{1}{2}(-6)=-3$ sq. units
$=3$ sq. units(numerically)
$\operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2}[4(0-2)+4(2+6)+5(-6-0)]$
$=\frac{1}{2}[-8+32-30]=\frac{1}{2}[-6]=-3$ sq.units
$=3$ sq.units (numerically)
From (1) and (2)

$$
\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC})
$$

i.e., A median divides the triangle into two triangles of equal areas.

