## Ex-8.1

Q1. In $\triangle \mathrm{ABC}$, right angled at $\mathrm{B}, \mathrm{AB}=24 \mathrm{~cm}$,
$\mathrm{BC}=7 \mathrm{~cm}$. Determine : (i) $\sin \mathrm{A}, \cos \mathrm{A}$ (ii) $\sin \mathrm{C}, \cos \mathrm{C}$.
Sol. By Pythagoras Theorem,

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=(24)^{2}+(7)^{2}=625
$$

$\Rightarrow \mathrm{AC}=\sqrt{625}=25 \mathrm{~cm}$.
(i) $\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}\left\{\right.$ i.e., $\left.\frac{\text { side opposite to angle } \mathrm{A}}{\mathrm{Hyp} \text {. }}\right\}$
$=\frac{7}{25}(\because \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{AC}=25 \mathrm{~cm})$

$\cos A=\frac{A B}{A C}\left\{\right.$ i.e., $\left.\frac{\text { side adjacent to angle } A}{\text { Hyp. }}\right\}$
$=\frac{24}{25}(\because \mathrm{AB}=24 \mathrm{~cm}$ and $\mathrm{AC}=25 \mathrm{~cm})$
(ii) $\sin C=\frac{A B}{A C}\left\{\right.$ i.e., $\left.\frac{\text { side opposite to angle } C}{H y p}\right\}$

$$
=\frac{24}{25}
$$

$\cos C=\frac{B C}{A C}\left\{\right.$ i.e., $\left.\frac{\text { side adjacent to angle } C}{\text { Hyp. }}\right\}$
$=\frac{7}{25}$
Q2. In fig, find $\tan P-\cot R$.


Sol. In figure, by the Pythagoras Theorem,
$\mathrm{QR}^{2}=\mathrm{PR}^{2}-\mathrm{PQ}^{2}=(13)^{2}-(12)^{2}=25$
$\Rightarrow \mathrm{QR}=\sqrt{25}=5 \mathrm{~cm}$
In $\triangle \mathrm{PQR}$ right angled at $\mathrm{Q}, \mathrm{QR}=5 \mathrm{~cm}$ is side opposite to the angle P and $\mathrm{PQ}=12 \mathrm{~cm}$ is side adjacent to the angle $P$.
Therefore, $\tan \mathrm{P}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{5}{12}$.

Now, $\mathrm{QR}=5 \mathrm{~cm}$ is side adjacent to the angle R and $\mathrm{PQ}=12 \mathrm{~cm}$ is side opposite to the angle R.

Therefore, $\cot \mathrm{R}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{5}{12}$
Hence, $\tan \mathrm{P}-\cot \mathrm{R}=\frac{5}{12}-\frac{5}{12}=0$

Q3. If $\sin \mathrm{A}=\frac{3}{4}$, calculate $\cos \mathrm{A}$ and $\tan \mathrm{A}$.
Sol. In figure,
$\sin \mathrm{A}=\frac{3}{4}$
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{4}$
$\Rightarrow \mathrm{BC}=3 \mathrm{k}$
and $\mathrm{AC}=4 \mathrm{k}$
where k is the constant of proportionality.
By Pythagoras Theorem,

$\mathrm{AB}^{2}=\mathrm{AC}^{2}-\mathrm{BC}^{2}=(4 \mathrm{k})^{2}-(3 \mathrm{k})^{2}=7 \mathrm{k}^{2}$
$\Rightarrow \mathrm{AB}=\sqrt{7} \mathrm{k}$
So, $\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{7} \mathrm{k}}{4 \mathrm{k}}=\frac{\sqrt{7}}{4}$
and $\tan A=\frac{B C}{A B}=\frac{3 k}{\sqrt{7} k}=\frac{3}{\sqrt{7}}$

Q4. Given $15 \cot \mathrm{~A}=8$, find $\sin \mathrm{A}$ and $\sec \mathrm{A}$.
Sol. $\cot \mathrm{A}=\frac{8}{15}$
$\Rightarrow \frac{A B}{B C}=\frac{8}{15}$
$\Rightarrow \mathrm{AB}=8 \mathrm{k}$
and $\mathrm{BC}=15 \mathrm{k}$


Now, $\mathrm{AC}=\sqrt{(8 \mathrm{k})^{2}+(15 \mathrm{k})^{2}}=17 \mathrm{k}$
$\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{15 \mathrm{k}}{17 \mathrm{k}}=\frac{15}{17}, \quad \sec \mathrm{~A}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{17 \mathrm{k}}{8 \mathrm{k}}=\frac{17}{8}$

Q5. Given $\sec \theta=\frac{13}{12}$, calculate all other trigonometric ratios.
Sol. $\sec \theta=\frac{13}{12}$
$\Rightarrow \frac{A C}{B C}=\frac{13}{12}$
By Pythagoras Theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$(13 \mathrm{k})^{2}=\mathrm{AB}^{2}+(12 \mathrm{k})^{2}$
$\mathrm{AB}^{2}=169 \mathrm{k}^{2}-144 \mathrm{k}^{2}$

$\mathrm{AB}=\sqrt{25 \mathrm{k}^{2}}=5 \mathrm{k}$
$\sin \theta=\frac{A B}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$
$\cos \theta=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{12 \mathrm{k}}{13 \mathrm{k}}=\frac{12}{13}$
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{5 \mathrm{k}}{12 \mathrm{k}}=\frac{5}{12}$
$\cot \theta=\frac{B C}{A B}=\frac{12 k}{5 k}=\frac{12}{5}$
$\operatorname{cosec} \theta=\frac{A C}{A B}=\frac{13 k}{5 k}=\frac{13}{5}$

Q6. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are acute angles such that $\cos \mathrm{A}=\cos \mathrm{B}$, then show that $\angle \mathrm{A}=\angle \mathrm{B}$.
Sol. In figure $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are acute angles of $\triangle \mathrm{ABC}$.
Draw $C D \perp A B$.
We are given that $\cos A=\cos B$
$\Rightarrow \frac{A D}{A C}=\frac{B D}{B C}$

$\Rightarrow \frac{A D}{B D}=\frac{A C}{B C}\left(E\right.$ ach $\left.=\frac{C D}{C D}\right)$
$\Rightarrow \quad \triangle \mathrm{ADC} \sim \triangle \mathrm{BDC} \quad(\mathrm{SSS}$ similarity criterion) $\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}$
( $\because$ all the corresponding angles of two similar triangles are equal)

Q7. If $\cot \theta=\frac{7}{8}$, evaluate :
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
(ii) $\cot ^{2} \theta$

Sol. In figure,

$$
\begin{aligned}
& \cot \theta=\frac{7}{8} \\
\Rightarrow \quad & \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{7}{8} \\
\Rightarrow \quad & \mathrm{AB}=7 \mathrm{k}
\end{aligned}
$$


and $\mathrm{BC}=8 \mathrm{k}$
Now, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=(7 \mathrm{k})^{2}+(8 \mathrm{k})^{2}$

$$
=113 \mathrm{k}^{2}
$$

$\Rightarrow \quad \mathrm{AC}=\sqrt{113} \mathrm{k}$
Then $\sin \theta=\frac{B C}{A C}=\frac{8 k}{\sqrt{113} k}=\frac{8}{\sqrt{113}}$
and $\cos \theta=\frac{A B}{A C}=\frac{7 k}{\sqrt{113} k}=\frac{7}{\sqrt{113}}$.
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{\left(1+\frac{8}{\sqrt{113}}\right)\left(1-\frac{8}{\sqrt{113}}\right)}{\left(1+\frac{7}{\sqrt{113}}\right)\left(1-\frac{7}{\sqrt{113}}\right)}$

$$
\begin{aligned}
& \frac{(\sqrt{113}+8)(\sqrt{113}-8)}{(\sqrt{113}+7)(\sqrt{113}-7)}=\frac{(\sqrt{113})^{2}-(8)^{2}}{(\sqrt{113})^{2}-(7)^{2}} \\
& \left\{\because(a+b)(a-b)=a^{2}-b^{2}\right\} \\
& =\frac{113-64}{113-49}=\frac{49}{64}
\end{aligned}
$$

(ii) $\cot \theta=\frac{7}{8} \quad \Rightarrow \cot ^{2} \theta=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$

Q8. If $3 \cot A=4$, check whether
$\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$ or not.
Sol. In figure,
$3 \cot \mathrm{~A}=4$
$\Rightarrow \cot A=\frac{4}{3}$
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{3}$

$\Rightarrow \mathrm{AB}=4 \mathrm{k}$ and $\mathrm{BC}=3 \mathrm{k}$
Now, $\mathrm{AC}=\sqrt{(4 \mathrm{k})^{2}+(3 \mathrm{k})^{2}}=5 \mathrm{k}$

Then $\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3 \mathrm{k}}{5 \mathrm{k}}=\frac{3}{5}$,

$$
\cos \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{4 \mathrm{k}}{5 \mathrm{k}}=\frac{4}{5}
$$

and $\quad \tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3 \mathrm{k}}{4 \mathrm{k}}=\frac{3}{4}$

$$
\begin{aligned}
\text { LHS } & =\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}} \\
& =\frac{1-\frac{9}{16}}{1+\frac{9}{16}}=\frac{16-9}{16+9}=\frac{7}{25}
\end{aligned}
$$

$$
\begin{aligned}
\text { RHS } & =\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2} \\
& =\frac{16}{25}-\frac{9}{25}=\frac{7}{25}
\end{aligned}
$$

Therefore, LHS = RHS,

$$
\text { i.e., } \frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}
$$

$$
\left(\because \text { Each side }=\frac{7}{25}\right)
$$

Q9. In triangle $A B C$ right angled at $B$, if $\tan A=\frac{1}{\sqrt{3}}$, find the value of :
(i) $\sin \mathrm{A} \cos \mathrm{C}+\cos \mathrm{A} \sin \mathrm{C}$
(ii) $\cos \mathrm{A} \cos \mathrm{C}-\sin \mathrm{A} \sin \mathrm{C}$.

Sol. $\tan \mathrm{A}=\frac{1}{\sqrt{3}}$

$$
\frac{B C}{B A}=\frac{1}{\sqrt{3}}
$$

$$
\mathrm{BC}=\mathrm{k} \text { and } \mathrm{BA}=\sqrt{3}^{\mathrm{B}}
$$


$\mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{BA}^{2}$

$$
=\mathrm{k}^{2}+(\sqrt{3} \mathrm{k})^{2}=\mathrm{k}^{2}+3 \mathrm{k}^{2}=4 \mathrm{k}^{2}
$$

$\mathrm{AC}=\sqrt{4 \mathrm{k}^{2}}=2 \mathrm{k}$
(i) $\sin \mathrm{A} \cdot \cos \mathrm{C}+\cos \mathrm{A} \sin \mathrm{C}$

$$
=\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}=1
$$

(ii) $\cos \mathrm{A} \cdot \cos \mathrm{C}-\sin \mathrm{A} \cdot \sin \mathrm{C}$

$$
=\frac{\sqrt{3}}{2} \times \frac{1}{2}-\frac{1}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0
$$

Q10. In $\triangle P Q R$, right angled at $Q, P R+Q R=25 \mathrm{~cm}$ and $P Q=5 \mathrm{~cm}$. Determine the values of $\sin P, \cos P$ and $\tan P$.
Sol. In figure,


$$
\begin{array}{ll} 
& \mathrm{PQ}=5 \mathrm{~cm} \\
& \mathrm{PR}+\mathrm{QR}=25 \mathrm{~cm} \\
\text { i.e., } & \mathrm{PR}=25 \mathrm{~cm}-\mathrm{QR} \\
\text { Now, } \mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \\
\Rightarrow & (25-\mathrm{QR})^{2}=(5)^{2}+\mathrm{QR}^{2} \\
\Rightarrow \quad & 625-50 \times \mathrm{QR}^{2}+\mathrm{QR}^{2}=25+\mathrm{QR}^{2} \\
\Rightarrow \quad & 50 \times \mathrm{QR}=600 \Rightarrow \mathrm{QR}=12 \mathrm{~cm} \\
\text { and } & \mathrm{PR}=25 \mathrm{~cm}-12 \mathrm{~cm}=13 \mathrm{~cm}
\end{array}
$$

We find $\sin P=\frac{Q R}{P R}=\frac{12}{13}, \cos P=\frac{P Q}{P R}=\frac{5}{13}$
and $\tan \mathrm{P}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{12}{5}$

Q11. State whether the following are true or false. Justify your answer.
(i) The value of $\tan \mathrm{A}$ is always less than 1 .
(ii) $\sec \mathrm{A}=\frac{12}{5}$ for some value of angle A .
(iii) $\cos \mathrm{A}$ is the abbreviation used for the cosecant of angle A.
(iv) $\cot \mathrm{A}$ is the product of $\cot$ and A .
(v) $\sin \theta=\frac{4}{3}$ for some angle $\theta$.

Sol. (i) False.
We know that $60^{\circ}=\sqrt{3}>1$.
(ii) True.

We know that value of $\sec \mathrm{A}$ is always $\geq 1$.
(iii) False.

Because $\cos \mathrm{A}$ is abbreviation used for cosine A .
(iv) False, because $\cot \mathrm{A}$ is not the product of $\cot$ and A .
(v) False, because value of $\sin$ cannot be more than 1 .

