Ex - 6.4

Q1. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ respectively. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC.

Sol. $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ (Given)

$$
\begin{aligned}
& \Rightarrow \frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D E F)}=\frac{B C^{2}}{E E^{2}} \quad(B y \text { theorem 6.7) } \\
& \Rightarrow \frac{64}{121}=\frac{B C^{2}}{E F^{2}} \quad \Rightarrow\left\{\frac{B C}{E F}\right\}^{2}=\left\{\frac{8}{11}\right\}^{2} \\
& \Rightarrow \frac{B C}{E F}=\frac{8}{11} \quad \Rightarrow B C=\frac{8}{11} \times E F \\
& \Rightarrow B C=\frac{8}{11} \times 15.4 \mathrm{~cm}=11.2 \mathrm{~cm}
\end{aligned}
$$

Q2. Diagonals of trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles AOB and COD .

Sol.

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (Alternate interior angles)
$\angle \mathrm{OBA}=\angle \mathrm{ODC}$ (Alternate interior angles)
\therefore By AA, similarity

$$
\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}
$$

So, $\frac{\operatorname{ar} . \triangle A O B}{\operatorname{ar} \cdot \triangle C O D}=\left(\frac{A B}{C D}\right)^{2}$

$$
\begin{aligned}
& =\left(\frac{2}{1}\right)^{2}\{\because \mathrm{AB}=2 \mathrm{CD}\} \\
& =4: 1
\end{aligned}
$$

Q3. In figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersects $B C$ at O, show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.

Sol. Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$ (see figure)
$\Delta \mathrm{OLA} \sim \triangle \mathrm{OMD} \quad$ (AA similarity criterion)

$\Rightarrow \frac{A L}{D M}=\frac{A O}{D O}$
Now, $\quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \times(B C) \times(A L)}{\frac{1}{2} \times(B C) \times(D M)}$
$=\frac{A L}{D M}=\frac{A O}{D O}$
Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$

Q4. If the areas of two similar triangles are equal, prove that they are congruent.
Sol. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and area $(\triangle \mathrm{ABC}) \quad=\operatorname{area}(\triangle \mathrm{PQR}) \quad$ (Given)
i.e., $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle P Q R)}=1$
$\Rightarrow \frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{P R^{2}}=1$
$\Rightarrow \mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}$ and $\mathrm{CA}=\mathrm{PR}$
$\Rightarrow \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Q5. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$.

Sol.

$\mathrm{DF}=\frac{1}{2} \mathrm{BC}, \mathrm{DE}=\frac{1}{2} \mathrm{AC}, \mathrm{EF}=\frac{1}{2} \mathrm{AB}$
[By midpoint theorem]
So, $\frac{D F}{B C}=\frac{D E}{A C}=\frac{E F}{A B}=\frac{1}{2}$
$\therefore \quad \triangle \mathrm{DEF} \sim \triangle \mathrm{CAB}$
So, $\frac{\operatorname{ar} \triangle D E F}{\operatorname{ar} \triangle A B C}=\left(\frac{D E}{A C}\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$ or $1: 4$
Q6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Sol. In figure, $A D$ is a median of $\triangle A B C$ and $P M$ is a median of $\triangle P Q R$. Here, D is mid-point of $B C$ and M is mid-point of QR .
Now, we have $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

$\Rightarrow \angle \mathrm{B}=\angle \mathrm{Q}$
(Corresponding angles are equal)
Also $\quad \frac{A B}{P Q}=\frac{B C}{Q R}$
(Ratio of corresponding sides are equal)
$\Rightarrow \frac{A B}{P Q}=\frac{2 B D}{2 Q M}$
$(\because D$ is mid-point of $B C$ and M is mid-point of $Q R)$

$$
\begin{equation*}
\Rightarrow \frac{A B}{P Q}=\frac{B D}{Q M} \tag{2}
\end{equation*}
$$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$

$$
\begin{equation*}
\angle \mathrm{ABD}=\angle \mathrm{PQM} \tag{By1}
\end{equation*}
$$

and $\frac{A B}{P Q}=\frac{B D}{Q M}$
$\Rightarrow \triangle \mathrm{ABD} \sim \Delta \mathrm{PQM}$
(SAS similarity)
$\Rightarrow \frac{A B}{P Q}=\frac{A D}{P M}$
Now, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}} \quad$ (By theorem 6.7)
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}} \quad\left(\because \frac{A B}{P Q}=\frac{A D}{P M}\right)$

Q7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Sol. ABCD is a square having sides of length $=\mathrm{a}$.

Then the diagonal $\mathrm{BD}=\mathrm{a} \sqrt{2}$.
We construct equilateral $\Delta \mathrm{s}$ PAB and QBD
$\Rightarrow \quad \triangle \mathrm{PAB} \sim \Delta \mathrm{QBD}$ (Equilateral triangles are similar)
$\Rightarrow \frac{\operatorname{ar}(\triangle P A B)}{\operatorname{ar}(\triangle Q B D)}=\frac{A B^{2}}{B D^{2}}=\frac{a^{2}}{(a \sqrt{2})^{2}}=\frac{1}{2}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{PAB})=\frac{1}{2}$ ar $(\triangle \mathrm{QBD})$.
Tick the correct answer and justify

Q8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC . Ratio of the areas of triangles ABC and BDE is
(1) $2: 1$
(2) $1: 2$
(3) $4: 1$
(4) $1: 4$

Sol.

Since, both are equilateral triangles.
$\triangle \mathrm{ABC} \sim \Delta \mathrm{EBD}$

$$
\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle B D E}=\left(\frac{B C}{B D}\right)^{2}=\left(\frac{2}{1}\right)^{2}=4: 1
$$

Q9. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(1) $2: 3$
(2) $4: 9$
(3) $81: 16$
(4) $16: 81$

Sol. $\frac{\text { area of } 1^{\text {st }} \Delta}{\text { area of } 2^{\text {nd }} \Delta}=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$

