

RELATIONS AND FUNCTIONS

1.1 Overview

1.1.1 Relation

A relation R from a non-empty set A to a non empty set B is a subset of the Cartesian product $A \times B$. The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R. The set of all second elements in a relation R from a set A to a set B is called the range of the relation R. The whole set B is called the codomain of the relation R. Note that range is always a subset of codomain.

1.1.2 Types of Relations

A relation R in a set A is subset of $A \times A$. Thus empty set ϕ and $A \times A$ are two extreme relations.

- (i) A relation R in a set A is called empty relation, if no element of A is related to any element of A, i.e., $R = \phi \subset A \times A$.
- (ii) A relation R in a set A is called universal relation, if each element of A is related to every element of A, i.e., $R = A \times A$.
- (iii) A relation R in A is said to be reflexive if aRa for all $a \in A$, R is symmetric if $aRb \Rightarrow bRa$, $\forall a, b \in A$ and it is said to be transitive if aRb and $bRc \Rightarrow aRc$ $\forall a, b, c \in A$. Any relation which is reflexive, symmetric and transitive is called an equivalence relation.
- Note: An important property of an equivalence relation is that it divides the set into pairwise disjoint subsets called equivalent classes whose collection is called a partition of the set. Note that the union of all equivalence classes gives the whole set.

1.1.3 Types of Functions

(i) A function $f: X \to Y$ is defined to be one-one (or injective), if the images of distinct elements of X under *f* are distinct, i.e.,

 $x_1, x_2 \in \mathbf{X}, f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$

(ii) A function f: X → Y is said to be onto (or surjective), if every element of Y is the image of some element of X under f, i.e., for every y ∈ Y there exists an element x ∈ X such that f (x) = y.

(iii) A function $f: X \rightarrow Y$ is said to be one-one and onto (or bijective), if f is both oneone and onto.

1.1.4 Composition of Functions

(i) Let $f : A \to B$ and $g : B \to C$ be two functions. Then, the composition of f and g, denoted by $g \circ f$, is defined as the function $g \circ f : A \to C$ given by

$$g \ o \ f(x) = g \ (f(x)), \ \forall \ x \in \mathbf{A}.$$

- (ii) If $f: A \to B$ and $g: B \to C$ are one-one, then $g \circ f: A \to C$ is also one-one
- (iii) If *f*: A → B and *g*: B → C are onto, then *g* o *f*: A → C is also onto.
 However, converse of above stated results (ii) and (iii) need not be true. Moreover, we have the following results in this direction.
- (iv) Let $f: A \to B$ and $g: B \to C$ be the given functions such that $g \circ f$ is one-one. Then f is one-one.
- (v) Let $f: A \to B$ and $g: B \to C$ be the given functions such that $g \circ f$ is onto. Then g is onto.

1.1.5 Invertible Function

- (i) A function $f: X \to Y$ is defined to be invertible, if there exists a function $g: Y \to X$ such that $g \circ f = I_x$ and $f \circ g = I_Y$. The function g is called the inverse of f and is denoted by f^{-1} .
- (ii) A function $f: X \to Y$ is invertible if and only if f is a bijective function.
- (iii) If $f : X \to Y$, $g : Y \to Z$ and $h : Z \to S$ are functions, then $h \circ (g \circ f) = (h \circ g) \circ f$.
- (iv) Let $f: X \to Y$ and $g: Y \to Z$ be two invertible functions. Then g of is also invertible with $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

1.1.6 Binary Operations

- (i) A binary operation * on a set A is a function $*: A \times A \rightarrow A$. We denote *(a, b) by a * b.
- (ii) A binary operation * on the set X is called commutative, if a * b = b * a for every $a, b \in X$.
- (iii) A binary operation $* : A \times A \rightarrow A$ is said to be associative if (a * b) * c = a * (b * c), for every $a, b, c \in A$.
- (iv) Given a binary operation $* : A \times A \rightarrow A$, an element $e \in A$, if it exists, is called identity for the operation *, if a * e = a = e * a, $\forall a \in A$.

(v) Given a binary operation $* : A \times A \rightarrow A$, with the identity element e in A, an element $a \in A$, is said to be invertible with respect to the operation *, if there exists an element b in A such that a * b = e = b * a and b is called the inverse of a and is denoted by a^{-1} .

1.2 Solved Examples

Short Answer (S.A.)

Example 1 Let $A = \{0, 1, 2, 3\}$ and define a relation R on A as follows:

 $\mathbf{R} = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}.$

Is R reflexive? symmetric? transitive?

Solution R is reflexive and symmetric, but not transitive since for $(1, 0) \in \mathbb{R}$ and $(0, 3) \in \mathbb{R}$ whereas $(1, 3) \notin \mathbb{R}$.

Example 2 For the set $A = \{1, 2, 3\}$, define a relation R in the set A as follows:

$$\mathbf{R} = \{(1, 1), (2, 2), (3, 3), (1, 3)\}.$$

Write the ordered pairs to be added to R to make it the smallest equivalence relation.

Solution (3, 1) is the single ordered pair which needs to be added to R to make it the smallest equivalence relation.

Example 3 Let R be the equivalence relation in the set Z of integers given by $R = \{(a, b) : 2 \text{ divides } a - b\}$. Write the equivalence class [0].

Solution $[0] = \{0, \pm 2, \pm 4, \pm 6, ...\}$

Example 4 Let the function $f : \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 4x - 1, $\forall x \in \mathbf{R}$. Then, show that *f* is one-one.

Solution For any two elements $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$, we have

$$4x_1 - 1 = 4x_2 - 1$$

$$\Rightarrow \quad 4x_1 = 4x_2, \text{ i.e., } x_1 = x_2$$

Hence *f* is one-one.

Example 5 If $f = \{(5, 2), (6, 3)\}, g = \{(2, 5), (3, 6)\}, write f o g.$

Solution $f \circ g = \{(2, 2), (3, 3)\}$

Example 6 Let $f : \mathbf{R} \to \mathbf{R}$ be the function defined by $f(x) = 4x - 3 \forall x \in \mathbf{R}$. Then write f^{-1} .

Solution Given that f(x) = 4x - 3 = y (say), then 4x = y + 3

 $\Rightarrow \qquad x = \frac{y+3}{4}$

Hence $f^{-1}(y) = \frac{y+3}{4} \implies f^{-1}(x) = \frac{x+3}{4}$

Example 7 Is the binary operation * defined on Z (set of integer) by $m * n = m - n + mn \quad \forall m, n \in \mathbb{Z}$ commutative?

Solution No. Since for $1, 2 \in \mathbb{Z}$, 1 * 2 = 1 - 2 + 1.2 = 1 while 2 * 1 = 2 - 1 + 2.1 = 3 so that $1 * 2 \neq 2 * 1$.

Example 8 If $f = \{(5, 2), (6, 3)\}$ and $g = \{(2, 5), (3, 6)\}$, write the range of f and g.

Solution The range of $f = \{2, 3\}$ and the range of $g = \{5, 6\}$.

Example 9 If $A = \{1, 2, 3\}$ and *f*, *g* are relations corresponding to the subset of $A \times A$ indicated against them, which of *f*, *g* is a function? Why?

 $f = \{(1, 3), (2, 3), (3, 2)\}$ $g = \{(1, 2), (1, 3), (3, 1)\}$

Solution f is a function since each element of A in the first place in the ordered pairs is related to only one element of A in the second place while g is not a function because 1 is related to more than one element of A, namely, 2 and 3.

Example 10 If $A = \{a, b, c, d\}$ and $f = \{a, b\}$, (b, d), (c, a), $(d, c)\}$, show that f is one-one from A onto A. Find f^{-1} .

Solution *f* is one-one since each element of A is assigned to distinct element of the set A. Also, *f* is onto since f(A) = A. Moreover, $f^{-1} = \{(b, a), (d, b), (a, c), (c, d)\}$.

Example 11 In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), $m, n \in \mathbb{N}$. Is the operation * commutative and associative?

Solution The operation is clearly commutative since

 $m * n = g.c.d(m, n) = g.c.d(n, m) = n * m \quad \forall m, n \in \mathbb{N}.$

It is also associative because for $l, m, n \in \mathbb{N}$, we have

l * (m * n) = g. c. d (l, g.c.d (m, n))= g.c.d. (g. c. d (l, m), n) = (l * m) * n.

Long Answer (L.A.)

Example 12 In the set of natural numbers **N**, define a relation R as follows: $\forall n, m \in \mathbf{N}, nRm$ if on division by 5 each of the integers *n* and *m* leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R.

Solution R is reflexive since for each $a \in \mathbf{N}$, aRa. R is symmetric since if aRb, then bRa for $a, b \in \mathbf{N}$. Also, R is transitive since for $a, b, c \in \mathbf{N}$, if aRb and bRc, then aRc. Hence R is an equivalence relation in N which will partition the set N into the pairwise disjoint subsets. The equivalent classes are as mentioned below:

 $\begin{array}{l} \mathbf{A}_{0} = \{5,\,10,\,15,\,20\,\ldots\}\\ \mathbf{A}_{1} = \{1,\,6,\,11,\,16,\,21\,\ldots\}\\ \mathbf{A}_{2} = \{2,\,7,\,12,\,17,\,22,\,\ldots\}\\ \mathbf{A}_{3} = \{3,\,8,\,13,\,18,\,23,\,\ldots\}\\ \mathbf{A}_{4} = \{4,\,9,\,14,\,19,\,24,\,\ldots\} \end{array}$

It is evident that the above five sets are pairwise disjoint and

$$\mathbf{A}_0 \cup \mathbf{A}_1 \cup \mathbf{A}_2 \cup \mathbf{A}_3 \cup \mathbf{A}_4 = \bigcup_{i=0}^{4} \mathbf{A}_i = \mathbf{N}.$$

Example 13 Show that the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \frac{x}{x^2 + 1}, \forall x \in \mathbf{R}$, is

neither one-one nor onto.

Solution For $x_1, x_2 \in \mathbf{R}$, consider

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1}{x_1^2 + 1} = \frac{x_2}{x_2^2 + 1}$$

$$\Rightarrow x_1 x_2^2 + x_1 = x_2 x_1^2 + x_2$$

$$\Rightarrow x_1 x_2 (x_2 - x_1) = x_2 - x_1$$

$$\Rightarrow x_1 = x_2 \text{ or } x_1 x_2 = 1$$

We note that there are point, x_1 and x_2 with $x_1 \neq x_2$ and $f(x_1) = f(x_2)$, for instance, if we take $x_1 = 2$ and $x_2 = \frac{1}{2}$, then we have $f(x_1) = \frac{2}{5}$ and $f(x_2) = \frac{2}{5}$ but $2 \neq \frac{1}{2}$. Hence *f* is not one-one. Also, *f* is not onto for if so then for $1 \in \mathbb{R} \exists x \in \mathbb{R}$ such that f(x) = 1

which gives $\frac{x}{x^2+1} = 1$. But there is no such x in the domain **R**, since the equation $x^2 - x + 1 = 0$ does not give any real value of x.

Example 14 Let $f, g : \mathbf{R} \to \mathbf{R}$ be two functions defined as f(x) = |x| + x and $g(x) = |x| - x \quad \forall x \in \mathbf{R}$. Then, find $f \circ g$ and $g \circ f$.

Solution Here f(x) = |x| + x which can be redefined as

$$f(x) = \begin{cases} 2x \text{ if } x \ge 0\\ 0 \text{ if } x < 0 \end{cases}$$

Similarly, the function g defined by g(x) = |x| - x may be redefined as

$$g(x) = \begin{cases} 0 \text{ if } x \ge 0\\ -2x \text{ if } x < 0 \end{cases}$$

Therefore, $g \circ f$ gets defined as :

For $x \ge 0$, $(g \ o \ f)(x) = g(f(x) = g(2x) = 0$ and for x < 0, $(g \ o \ f)(x) = g(f(x) = g(0) = 0$. Consequently, we have $(g \ o \ f)(x) = 0$, $\forall x \in \mathbf{R}$. Similarly, $f \ o \ g$ gets defined as: For $x \ge 0$, $(f \ o \ g)(x) = f(g(x) = f(0) = 0$, and for x < 0, $(f \ o \ g)(x) = f(g(x)) = f(-2x) = -4x$.

i.e.
$$(f \circ g)(x) = \begin{cases} 0, x > 0 \\ -4x, x < 0 \end{cases}$$

Example 15 Let **R** be the set of real numbers and $f : \mathbf{R} \to \mathbf{R}$ be the function defined by f(x) = 4x + 5. Show that *f* is invertible and find f^{-1} .

Solution Here the function $f : \mathbf{R} \to \mathbf{R}$ is defined as f(x) = 4x + 5 = y (say). Then

$$4x = y - 5$$
 or $x = \frac{y - 5}{4}$

RELATIONS AND FUNCTIONS 7

This leads to a function $g : \mathbf{R} \to \mathbf{R}$ defined as

$$g(y)=\frac{y-5}{4}.$$

Therefore,

$$(g \ o \ f) \ (x) = g(f \ (x) = g \ (4x + 5))$$
$$= \frac{4x + 5 - 5}{4} = x$$

$$g \ o \ f = \mathbf{I}_{R}$$
$$(f \ o \ g) \ (y) = f \ (g(y))$$

Similarly

$$= 4\left(\frac{y-5}{4}\right) + 5 =$$

 $= f\left(\frac{y-5}{4}\right)$

or

$$f \circ g = I_R$$
.

Hence *f* is invertible and $f^{-1} = g$ which is given by

$$f^{-1}(x) = \frac{x-5}{4}$$

Example 16 Let * be a binary operation defined on **Q**. Find which of the following binary operations are associative

(i) a * b = a - b for $a, b \in \mathbf{Q}$.

(ii)
$$a * b = \frac{ab}{4}$$
 for $a, b \in \mathbf{Q}$.

- (iii) a * b = a b + ab for $a, b \in \mathbf{Q}$.
- (iv) $a * b = ab^2$ for $a, b \in \mathbf{Q}$.

Solution

- (i) * is not associative for if we take a = 1, b = 2 and c = 3, then (a * b) * c = (1 * 2) * 3 = (1 - 2) * 3 = -1 - 3 = -4 and
 - a * (b * c) = 1 * (2 * 3) = 1 * (2 3) = 1 (-1) = 2.

Thus $(a * b) * c \neq a * (b * c)$ and hence * is not associative.

- (ii) * is associative since **Q** is associative with respect to multiplication.
- (iii) * is not associative for if we take a = 2, b = 3 and c = 4, then (a * b) * c = (2 * 3) * 4 = (2 - 3 + 6) * 4 = 5 * 4 = 5 - 4 + 20 = 21, and a * (b * c) = 2 * (3 * 4) = 2 * (3 - 4 + 12) = 2 * 11 = 2 - 11 + 22 = 13Thus $(a * b) * c \neq a * (b * c)$ and hence * is not associative.
- (iv) * is not associative for if we take a = 1, b = 2 and c = 3, then $(a * b) * c = (1 * 2) * 3 = 4 * 3 = 4 \times 9 = 36$ and $a * (b * c) = 1 * (2 * 3) = 1 * 18 = 1 \times 18^2 = 324$.

Thus $(a * b) * c \neq a * (b * c)$ and hence * is not associative.

Objective Type Questions

(C) Equivalence

Choose the correct answer from the given four options in each of the Examples 17 to 25.

Example 17 Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is

- (A) Reflexive and symmetric
- (B) Transitive and symmetric(D) Reflexive, transitive but not symmetric

Solution The correct choice is (D).

Since *n* divides $n, \forall n \in \mathbb{N}$, R is reflexive. R is not symmetric since for 3, $6 \in \mathbb{N}$, 3 R $6 \neq 6$ R 3. R is transitive since for *n*, *m*, *r* whenever n/m and $m/r \Rightarrow n/r$, i.e., *n* divides *m* and *m* divides *r*, then *n* will devide *r*.

Example 18 Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to $m \forall l, m \in L$. Then R is

(A)	reflexive	(B)	symmetric
(C)	transitive	(D)	none of these

Solution The correct choice is (B).

Example 19 Let N be the set of natural numbers and the function $f : N \to N$ be defined by $f(n) = 2n + 3 \forall n \in N$. Then f is

(A) surjective	(B) injective
(C) bijective	(D) none of these

Solution (B) is the correct option.

Example 20 Set A has 3 elements and the set B has 4 elements. Then the number of

injective mappings that can be defined from A to B is

(A)	144	(B)	12
(C)	24	(D)	64

Solution The correct choice is (C). The total number of injective mappings from the set containing 3 elements into the set containing 4 elements is ${}^{4}P_{3} = 4! = 24$.

Example 21 Let $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = \sin x$ and $g : \mathbf{R} \to \mathbf{R}$ be defined by $g(x) = x^2$, then $f \circ g$ is

(A)	$x^2 \sin x$	(B)	$(\sin x)^2$
(C)	$\sin x^2$	(D)	$\frac{\sin x}{x^2}$

Solution (C) is the correct choice.

Example 22 Let $f : \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 3x - 4. Then $f^{-1}(x)$ is given by

(A)	$\frac{x+4}{3}$	(B)	$\frac{x}{3}-4$
(C)	3x + 4	(D)	None of these

Solution (A) is the correct choice.

Example 23 Let $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = x^2 + 1$. Then, pre-images of 17 and -3, respectively, are

(A)	♦ , {4, −4}	(B)	$\{3, -3\}, \phi$
(C)	$\{4, -4\}, \phi$	(D)	$\{4, -4, \{2, -2\}$

Solution (C) is the correct choice since for $f^{-1}(17) = x \Rightarrow f(x) = 17$ or $x^2 + 1 = 17$ $\Rightarrow x = \pm 4$ or $f^{-1}(17) = \{4, -4\}$ and for $f^{-1}(-3) = x \Rightarrow f(x) = -3 \Rightarrow x^2 + 1$ $= -3 \Rightarrow x^2 = -4$ and hence $f^{-1}(-3) = \phi$.

Example 24 For real numbers x and y, define xRy if and only if $x - y + \sqrt{2}$ is an irrational number. Then the relation R is

- (A) reflexive (B) symmetric
- (C) transitive (D) none of these

Solution (A) is the correct choice.

Fill in the blanks in each of the Examples 25 to 30.

Example 25 Consider the set $A = \{1, 2, 3\}$ and R be the smallest equivalence relation on A, then R =_____

Solution $R = \{(1, 1), (2, 2), (3, 3)\}.$

Example 26 The domain of the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \sqrt{x^2 - 3x + 2}$ is

Solution Here $x^2 - 3x + 2 \ge 0$ $\Rightarrow (x-1)(x-2) \ge 0$ $\Rightarrow x \le 1 \text{ or } x \ge 2$

Hence the domain of $f = (-\infty, 1] \cup [2, \infty)$

Example 27 Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is _____.

Solution *n*!

Example 28 Let **Z** be the set of integers and R be the relation defined in **Z** such that aRb if a - b is divisible by 3. Then R partitions the set **Z** into ______ pairwise disjoint subsets.

Solution Three.

Example 29 Let **R** be the set of real numbers and * be the binary operation defined on **R** as $a * b = a + b - ab \forall a, b \in \mathbf{R}$. Then, the identity element with respect to the binary operation * is _____.

Solution 0 is the identity element with respect to the binary operation *.

State True or False for the statements in each of the Examples 30 to 34.

Example 30 Consider the set $A = \{1, 2, 3\}$ and the relation $R = \{(1, 2), (1, 3)\}$. R is a transitive relation.

Solution True.

Example 31 Let A be a finite set. Then, each injective function from A into itself is not surjective.

Solution False.

Example 32 For sets A, B and C, let $f : A \to B$, $g : B \to C$ be functions such that $g \circ f$ is injective. Then both f and g are injective functions.

Solution False.

Example 33 For sets A, B and C, let $f : A \to B$, $g : B \to C$ be functions such that $g \circ f$ is surjective. Then g is surjective **Solution** True.

Example 34 Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, $\forall a, b \in N$ has identity element.

Solution False.

1.3 EXERCISE

Short Answer (S.A.)

1. Let $A = \{a, b, c\}$ and the relation R be defined on A as follows:

$$\mathbf{R} = \{(a, a), (b, c), (a, b)\}\$$

Then, write minimum number of ordered pairs to be added in \mathbf{R} to make \mathbf{R} reflexive and transitive.

- 2. Let D be the domain of the real valued function f defined by $f(x) = \sqrt{25 x^2}$. Then, write D.
- 3. Let $f, g: \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 2x + 1 and $g(x) = x^2 2$, $\forall x \in \mathbf{R}$, respectively. Then, find $g \circ f$.
- 4. Let $f : \mathbf{R} \to \mathbf{R}$ be the function defined by $f(x) = 2x 3 \quad \forall x \in \mathbf{R}$. write f^{-1} .
- 5. If A = {a, b, c, d} and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$, write f^{-1} .
- 6. If $f : \mathbf{R} \to \mathbf{R}$ is defined by $f(x) = x^2 3x + 2$, write f(f(x)).
- 7. Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? If g is described by $g(x) = \alpha x + \beta$, then what value should be assigned to α and β .
- 8. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.

(i) $\{(x, y): x \text{ is a person, } y \text{ is the mother of } x\}$.

(ii){(a, b): *a* is a person, *b* is an ancestor of *a*}.

9. If the mappings f and g are given by

 $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, write $f \circ g$.

- 10. Let C be the set of complex numbers. Prove that the mapping $f: \mathbb{C} \to \mathbb{R}$ given by $f(z) = |z|, \forall z \in \mathbb{C}$, is neither one-one nor onto.
- 11. Let the function $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = \cos x$, $\forall x \in \mathbf{R}$. Show that *f* is neither one-one nor onto.
- 12. Let $X = \{1, 2, 3\}$ and $Y = \{4, 5\}$. Find whether the following subsets of $X \times Y$ are functions from X to Y or not.

(i)
$$f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$$
 (ii) $g = \{(1, 4), (2, 4), (3, 4)\}$
(iii) $h = \{(1, 4), (2, 5), (3, 5)\}$ (iv) $k = \{(1, 4), (2, 5)\}.$

13. If functions $f : A \to B$ and $g : B \to A$ satisfy $g \circ f = I_A$, then show that f is one-one and g is onto.

- 14. Let $f : \mathbf{R} \to \mathbf{R}$ be the function defined by $f(x) = \frac{1}{2 \cos x} \quad \forall x \in \mathbf{R}$. Then, find the range of f.
- **15.** Let *n* be a fixed positive integer. Define a relation R in Z as follows: $\forall a, b \in Z$, *a*R*b* if and only if a b is divisible by *n*. Show that R is an equivalance relation.

Long Answer (L.A.)

- 16. If $A = \{1, 2, 3, 4\}$, define relations on A which have properties of being:
 - (a) reflexive, transitive but not symmetric
 - (b) symmetric but neither reflexive nor transitive
 - (c) reflexive, symmetric and transitive.
- **17.** Let R be relation defined on the set of natural number N as follows:

 $\mathbf{R} = \{(x, y): x \in \mathbf{N}, y \in \mathbf{N}, 2x + y = 41\}$. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.

- **18.** Given $A = \{2, 3, 4\}$, $B = \{2, 5, 6, 7\}$. Construct an example of each of the following:
 - (a) an injective mapping from A to B
 - (b) a mapping from A to B which is not injective
 - (c) a mapping from B to A.
- **19.** Give an example of a map
 - (i) which is one-one but not onto
 - (ii) which is not one-one but onto
 - (iii) which is neither one-one nor onto.

20. Let A = **R** - {3}, B = **R** - {1}. Let
$$f : A \to B$$
 be defined by $f(x) = \frac{x-2}{x-3}$

 $\forall x \in A$. Then show that f is bijective.

21. Let A = [-1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

(i)
$$f(x) = \frac{x}{2}$$

(ii) $g(x) = |x|$
(iii) $h(x) = x|x|$
(iv) $k(x) = x^{2}$

22. Each of the following defines a relation on N:

(i) x is greater than $y, x, y \in \mathbf{N}$

(ii)
$$x + y = 10, x, y \in \mathbf{N}$$

- (iii) x y is square of an integer $x, y \in \mathbf{N}$
- (iv) $x + 4y = 10 \ x, y \in \mathbf{N}$.

Determine which of the above relations are reflexive, symmetric and transitive.

- **23.** Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in A ×A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A ×A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)].
- 24. Using the definition, prove that the function $f: A \rightarrow B$ is invertible if and only if f is both one-one and onto.
- 25. Functions $f, g: \mathbf{R} \to \mathbf{R}$ are defined, respectively, by $f(x) = x^2 + 3x + 1$, g(x) = 2x 3, find

(i)
$$f \circ g$$
 (ii) $g \circ f$ (iii) $f \circ f$ (iv) $g \circ g$

- 26. Let * be the binary operation defined on **Q**. Find which of the following binary operations are commutative
 - (i) $a * b = a b \forall a, b \in \mathbf{Q}$ (ii) $a * b = a^2 + b^2 \forall a, b \in \mathbf{Q}$
 - (iii) $a * b = a + ab \forall a, b \in \mathbf{Q}$ (iv) $a * b = (a b)^2 \forall a, b \in \mathbf{Q}$
- **27.** Let * be binary operation defined on **R** by a * b = 1 + ab, $\forall a, b \in \mathbf{R}$. Then the operation * is
 - (i) commutative but not associative
 - (ii) associative but not commutative
 - (iii) neither commutative nor associative
 - (iv) both commutative and associative

Objective Type Questions

Choose the correct answer out of the given four options in each of the Exercises from 28 to 47 (M.C.Q.).

- 28. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to $b \forall a, b \in T$. Then R is
 - (A) reflexive but not transitive (B) transitive but not symmetric
 - (C) equivalence (D) none of these
- **29.** Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is
 - (A) symmetric but not transitive (B) tra
- (B) transitive but not symmetric
 - (C) neither symmetric nor transitive (D) both symmetric and transitive

30.	The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are				
	(A)	1	(B)	2	
	(C)	3	(D)	5	
31.	If a	relation R on the set $\{1, 2, 3\}$ be define	ed by	$R = \{(1, 2)\}, \text{ then } R \text{ is }$	
	(A)	reflexive	(B)	transitive	
	(C)	symmetric	(D)	none of these	
32.	Let	us define a relation R in R as aRb if a	$\geq b.$	Then R is	
	(A)	an equivalence relation	(B)	reflexive, transitive but not symmetric	
	(C)	symmetric, transitive but not reflexive	(D)	neither transitive nor reflexive but symmetric.	
33.	Let	$A = \{1, 2, 3\}$ and consider the relation			
	I	$R = \{1, 1\}, (2, 2), (3, 3), (1, 2), (2, 3), (2, 3)\}$	1,3)}.		
	The	n R is			
	(A)	reflexive but not symmetric	(B)	reflexive but not transitive	
	(C)	symmetric and transitive	(D)	neither symmetric, nor transitive	
34.	The	identity element for the binary ope	eratio	$n * defined on Q \sim \{0\}$ as	
	$a * b = \frac{ab}{2} \forall a, b \in \mathbb{Q} \sim \{0\}$ is				
		$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\}$ is			
	(A)	$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\} \text{ is}$	(B)	0	
	(A) (C)	$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\} \text{ is}$ 1 2	(B) (D)	0 none of these	
35.	(A) (C) If th num	$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\}$ is 1 2 the set A contains 5 elements and the set ber of one-one and onto mappings from	(B) (D) set B m A to	0 none of these contains 6 elements, then the o B is	
35.	(A)(C)If the nume(A)	$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\}$ is 1 2 we set A contains 5 elements and the suber of one-one and onto mappings from 720	(B) (D) set B m A to (B)	0 none of these contains 6 elements, then the b B is 120	
35.	 (A) (C) If the nume (A) (C) 	$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\}$ is 1 2 the set A contains 5 elements and the set ber of one-one and onto mappings from 720 0	(B) (D) set B m A to (B) (D)	0 none of these contains 6 elements, then the b B is 120 none of these	
35. 36.	 (A) (C) If the nume (A) (C) Let A B is 	$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\}$ is 1 2 the set A contains 5 elements and the set of one-one and onto mappings from 720 0 A = $\{1, 2, 3,n\}$ and B = $\{a, b\}$. Then the	(B) (D) set B n A to (B) (D) he nut	0 none of these contains 6 elements, then the b B is 120 none of these mber of surjections from A into	
35. 36.	 (A) (C) If the nume (A) (C) Let A B is (A) 	$b = \frac{1}{2} \forall a, b \in \mathbb{Q} \sim \{0\}$ is 1 2 the set A contains 5 elements and the set ber of one-one and onto mappings from 720 0 $A = \{1, 2, 3,, n\}$ and $B = \{a, b\}$. Then the ${}^{n}P_{2}$	(B) (D) set B n A to (B) (D) he nu: (B)	0 none of these contains 6 elements, then the b B is 120 none of these mber of surjections from A into $2^n - 2$	

37. Let $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = \frac{1}{x} \quad \forall x \in \mathbf{R}$. Then f is (A) one-one (B) onto

(C) bijective (D) f is not defined

38. Let $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = 3x^2 - 5$ and $g : \mathbf{R} \to \mathbf{R}$ by $g(x) = \frac{x}{x^2 + 1}$. Then $g \circ f$ is

(A)
$$\frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$
 (B) $\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$

(C)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$
 (D) $\frac{3x^2}{9x^4 + 30}$

39. Which of the following functions from \mathbf{Z} into \mathbf{Z} are bijections?

(A)
$$f(x) = x^3$$
 (B) $f(x) = x + 2$

(C)
$$f(x) = 2x + 1$$
 (D) $f(x) = x^2 + 1$

40. Let $f : \mathbf{R} \to \mathbf{R}$ be the functions defined by $f(x) = x^3 + 5$. Then $f^{-1}(x)$ is

(A)
$$(x+5)^{\frac{1}{3}}$$

(B) $(x-5)^{\frac{1}{3}}$
(C) $(5-x)^{\frac{1}{3}}$
(D) $5-x$

41. Let $f: A \to B$ and $g: B \to C$ be the bijective functions. Then $(g \circ f)^{-1}$ is

(A)
$$f^{-1} \circ g^{-1}$$

(B) $f \circ g$
(D) $g \circ f$
(B) $f \circ g$
(D) $g \circ f$
(A) $f^{-1} (x) = f(x)$
(B) $f \circ g$
(D) $g \circ f$
(C) $f^{-1} (x) = f(x)$
(C) $(f \circ f) x = -x$
(B) $f^{-1} (x) = \frac{3x+2}{5x-3}$. Then
(B) $f^{-1} (x) = -f(x)$
(C) $(f \circ f) x = -x$
(D) $f^{-1} (x) = \frac{1}{19}f(x)$
(A) $f^{-1} (x) = \frac{1}{19}f(x)$
(A) $f^{-1} (x) = \frac{1}{19}f(x)$
(B) $f^{-1} (x) = -f(x)$
(C) $(f \circ f) x = -x$
(D) $f^{-1} (x) = \frac{1}{19}f(x)$
(E) $f^{-1} (x) = \frac{$

Then $(f \circ f) x$ is (A) constant (B) 1 + *x* (D) none of these (C) х **44.** Let $f: [2, \infty) \to \mathbf{R}$ be the function defined by $f(x) = x^2 - 4x + 5$, then the range of f is (B) [1,∞) (A) R (C) [4,∞) (B) [5,∞) **45.** Let $f: \mathbf{N} \to \mathbf{R}$ be the function defined by $f(x) = \frac{2x-1}{2}$ and $g: \mathbf{Q} \to \mathbf{R}$ be another function defined by g(x) = x + 2. Then $(g \circ f) \frac{3}{2}$ is (A) 1 (B) 1 $\frac{7}{2}$ (C) (B) none of these **46.** Let $f : \mathbf{R} \to \mathbf{R}$ be defined by 2x:x > 3 $f(x) = \begin{cases} x^2 : 1 < x \le 3 \\ 3x : x \le 1 \end{cases}$ Then f(-1) + f(2) + f(4) is (A) 9 (B) 14 5 (D) none of these (C) **47.** Let $f: \mathbf{R} \to \mathbf{R}$ be given by $f(x) = \tan x$. Then $f^{-1}(1)$ is (B) $\{n \ \pi + \frac{\pi}{4} : n \in \mathbb{Z}\}$ $\frac{\pi}{4}$ (A) does not exist (D) none of these (C) Fill in the blanks in each of the Exercises 48 to 52. **48.** Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ----

49. Let the relation R be defined on the set

A = {1, 2, 3, 4, 5} by R = { $(a, b) : |a^2 - b^2| < 8$. Then R is given by _____. 50. Let $f = \{(1, 2), (3, 5), (4, 1) \text{ and } g = \{(2, 3), (5, 1), (1, 3)\}$. Then $g \circ f =$ _____.

51. Let
$$f: \mathbf{R} \to \mathbf{R}$$
 be defined by $f(x) = \frac{x}{\sqrt{1+x^2}}$. Then $(f \circ f \circ f)(x) =$ _____
52. If $f(x) = (4 - (x-7)^3)$, then $f^{-1}(x) =$ _____.

State True or False for the statements in each of the Exercises 53 to 63.

- 53. Let $R = \{(3, 1), (1, 3), (3, 3)\}$ be a relation defined on the set $A = \{1, 2, 3\}$. Then R is symmetric, transitive but not reflexive.
- 54. Let $f : \mathbf{R} \to \mathbf{R}$ be the function defined by $f(x) = \sin(3x+2) \quad \forall x \in \mathbf{R}$. Then *f* is invertible.
- **55.** Every relation which is symmetric and transitive is also reflexive.
- 56. An integer m is said to be related to another integer n if m is a integral multiple of n. This relation in \mathbf{Z} is reflexive, symmetric and transitive.
- 57. Let A = {0, 1} and N be the set of natural numbers. Then the mapping $f: \mathbf{N} \to \mathbf{A}$ defined by $f(2n-1) = 0, f(2n) = 1, \forall n \in \mathbf{N}$, is onto.
- **58.** The relation R on the set $A = \{1, 2, 3\}$ defined as $R = \{\{1, 1), (1, 2), (2, 1), (3, 3)\}$ is reflexive, symmetric and transitive.
- **59.** The composition of functions is commutative.
- **60.** The composition of functions is associative.
- **61.** Every function is invertible.
- 62. A binary operation on a set has always the identity element.