



## **10.1 Overview**

**10.1.1** A quantity that has magnitude as well as direction is called a vector.

**10.1.2** The unit vector in the direction of  $\vec{a}$  is given by  $\frac{\vec{a}}{|\vec{a}|}$  and is represented by  $\hat{a}$ .

**10.1.3** Position vector of a point P (x, y, z) is given as  $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$  and its magnitude as  $|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$ , where O is the origin.

**10.1.4** The scalar components of a vector are its direction ratios, and represent its projections along the respective axes.

**10.1.5** The magnitude r, direction ratios (a, b, c) and direction cosines (l, m, n) of any vector are related as:

$$l=\frac{a}{r}, m=\frac{b}{r}, n=\frac{c}{r}.$$

10.1.6 The sum of the vectors representing the three sides of a triangle taken in order is 0

**10.1.7** The triangle law of vector addition states that "If two vectors are represented by two sides of a triangle taken in order, then their sum or resultant is given by the third side taken in opposite order".

# **10.1.8** Scalar multiplication

If  $\vec{a}$  is a given vector and  $\lambda$  a scalar, then  $\lambda \vec{a}$  is a vector whose magnitude is  $|\lambda \vec{a}| = |\lambda|$  $|\vec{a}|$ . The direction of  $\lambda \vec{a}$  is same as that of  $\vec{a}$  if  $\lambda$  is positive and, opposite to that of  $\vec{a}$  if  $\lambda$  is negative.

### 10.1.9 Vector joining two points

If  $P_1(x_1, y_1, z_1)$  and  $P_2(x_2, y_2, z_2)$  are any two points, then

$$\overrightarrow{\mathbf{P}_{1}\mathbf{P}_{2}} = (x_{2} - x_{1})\,\hat{i} + (y_{2} - y_{1})\,\hat{j} + (z_{2} - z_{1})\,\hat{k}$$
$$|\overrightarrow{\mathbf{P}_{1}\mathbf{P}_{2}}| = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}}$$

## 10.1.10 Section formula

The position vector of a point R dividing the line segment joining the points P and Q whose position vectors are  $\vec{a}$  and  $\vec{b}$ 

- (i) in the ratio *m* : *n* internally, is given by  $\frac{n\vec{a}+m\vec{b}}{m+n}$
- (ii) in the ratio m: n externally, is given by  $\frac{mb n\vec{a}}{m-n}$

**10.1.11** Projection of  $\vec{a}$  along  $\vec{b}$  is  $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$  and the Projection vector of  $\vec{a}$  along  $\vec{b}$ 

 $\operatorname{is}\left(\frac{\vec{a}\cdot\vec{b}}{|\overline{b}|}\right)\vec{b}.$ 

## 10.1.12 Scalar or dot product

The scalar or dot product of two given vectors  $\vec{a}$  and  $\vec{b}$  having an angle  $\theta$  between them is defined as

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ 

10.1.13 Vector or cross product

The cross product of two vectors  $\vec{a}$  and  $\vec{b}$  having angle  $\theta$  between them is given as  $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ ,

where  $\hat{n}$  is a unit vector perpendicular to the plane containing  $\vec{a}$  and  $\vec{b}$  and  $\vec{a}$ ,  $\vec{b}$ ,  $\hat{n}$  form a right handed system.

**10.1.14** If  $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$  are two vectors and  $\lambda$  is any scalar, then

$$\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$$

$$\lambda \vec{a} = (a_1)\hat{i} + (a_2)\hat{j} + (a_3)\hat{k}$$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = (b_1c_2 - b_2c_1)\hat{i} + (a_2c_1 - c_1c_2)\hat{j} + (a_1b_b - a_2b_1)\hat{k}$$

Angle between two vectors  $\vec{a}$  and  $\vec{b}$  is given by

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

# **10.2 Solved Examples**

Short Answer (S.A.)

**Example 1** Find the unit vector in the direction of the sum of the vectors  $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$  and  $\vec{b} = -\hat{i} + \hat{j} + 3\hat{k}$ .

**Solution** Let  $\vec{c}$  denote the sum of  $\vec{a}$  and  $\vec{b}$ . We have

$$\vec{c} = (2\hat{i} - \hat{j} + 2\hat{k}) + (-\hat{i} + \hat{j} + 3\hat{k}) = \hat{i} + 5\hat{k}$$
  
Now  $|\vec{c}| = \sqrt{1^2 + 5^2} = \sqrt{26}$ .

Thus, the required unit vector is 
$$\hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{26}} (\hat{i} + 5\hat{k}) = \frac{1}{\sqrt{26}} \hat{i} + \frac{5}{\sqrt{26}} \hat{k}$$

**Example 2** Find a vector of magnitude 11 in the direction opposite to that of  $\overrightarrow{PQ}$ , where P and Q are the points (1, 3, 2) and (-1, 0, 8), respetively.

**Solution** The vector with initial point P (1, 3, 2) and terminal point Q (-1, 0, 8) is given by

$$\overrightarrow{PQ} = (-1-1)\hat{i} + (0-3)\hat{j} + (8-2)\hat{k} = -2\hat{i} - 3\hat{j} + 6\hat{k}$$

Thus  $\overrightarrow{QP} = -\overrightarrow{PQ} = 2\hat{i} + 3\hat{j} - 6\hat{k}$ 

$$\Rightarrow |\overrightarrow{\mathbf{QP}}| = \sqrt{2^2 + 3^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7$$

Therefore, unit vector in the direction of  $\overrightarrow{QP}$  is given by

$$\widehat{\mathbf{QP}} = \frac{\overline{\mathbf{QP}}}{|\overline{\mathbf{QP}}|} = \frac{2\,\hat{i} + 3\,\hat{j} - 6\,\hat{k}}{7}$$

Hence, the required vector of magnitude 11 in direction of  $\overline{QP}$  is

11 
$$\widehat{\text{QP}} = 11 \left( \frac{2\hat{i} + 3\hat{j} - 6\hat{k}}{7} \right) = \frac{22}{7}\hat{i} + \frac{33}{7}\hat{j} - \frac{66}{7}\hat{k}$$

**Example 3** Find the position vector of a point R which divides the line joining the two points P and Q with position vectors  $\overrightarrow{OP} = 2 \overrightarrow{a} + \overrightarrow{b}$  and  $\overrightarrow{OQ} = \overrightarrow{a} - 2 \overrightarrow{b}$ , respectively, in the ratio 1:2, (i) internally and (ii) externally.

**Solution** (i) The position vector of the point R dividing the join of P and Q internally in the ratio 1:2 is given by

$$\overrightarrow{OR} = \frac{2(2\overrightarrow{a} + \overrightarrow{b}) + 1(\overrightarrow{a} - 2\overrightarrow{b})}{1+2} = \frac{5\overrightarrow{a}}{3}$$

(ii) The position vector of the point R' dividing the join of P and Q in the ratio1 : 2 externally is given by

$$\overrightarrow{OR'} = \frac{2(2\overrightarrow{a} + \overrightarrow{b}) - 1(\overrightarrow{a} - 2\overrightarrow{b})}{2 - 1} = 3\overrightarrow{a} + 4\overrightarrow{b}.$$

**Example 4** If the points (-1, -1, 2), (2, *m*, 5) and (3,11, 6) are collinear, find the value of *m*. **Solution** Let the given points be A (-1, -1, 2), B (2, *m*, 5) and C (3, 11, 6). Then

$$\overrightarrow{AB} = (2+1)\hat{i} + (m+1)\hat{j} + (5-2)\hat{k} = 3\hat{i} + (m+1)\hat{j} + 3\hat{k}$$

and

$$\overrightarrow{AC} = (3+1)\hat{i} + (11+1)\hat{j} + (6-2)\hat{k} = 4\hat{i} + 12\hat{j} + 4\hat{k}$$

Since A, B, C, are collinear, we have  $\overrightarrow{AB} = \lambda \overrightarrow{AC}$ , i.e.,

$$(3\hat{i} + (m+1)\hat{j} + 3\hat{k}) = (4\hat{i} + 12\hat{j} + 4\hat{k})$$

 $\Rightarrow$  3 = 4  $\lambda$  and m + 1 = 12  $\lambda$ 

Therefore m = 8.

**Example 5** Find a vector  $\vec{r}$  of magnitude  $3\sqrt{2}$  units which makes an angle of  $\frac{1}{4}$  and

 $\frac{1}{2}$  with y and z - axes, respectively.

**Solution** Here  $m = \frac{\cos -1}{4} = \frac{1}{\sqrt{2}}$  and  $n = \cos \frac{1}{2} = 0$ .

Therefore,  $l^2 + m^2 + n^2 = 1$  gives

$$\Rightarrow \qquad l^2 + \frac{1}{2} + 0 = 1$$

$$\Rightarrow \qquad l = \pm \frac{1}{\sqrt{2}}$$

Hence, the required vector  $\vec{r} = 3\sqrt{2} (l\hat{i} + m\hat{j} + n\hat{k})$  is given by

$$\vec{r} = 3\sqrt{2} \left( \pm \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + 0 \hat{k} \right) = \vec{r} = \pm 3\hat{i} + 3\hat{j}.$$

**Example 6** If  $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ ,  $\vec{b} = \hat{i} + \hat{j} - 2\hat{k}$  and  $\vec{c} = \hat{i} + 3\hat{j} - \hat{k}$ , find  $\lambda$  such that  $\vec{a}$  is perpendicular to  $\lambda \vec{b} + \vec{c}$ .

Solution We have

$$\lambda \vec{b} + \vec{c} = \lambda \left( \hat{i} + \hat{j} - 2\hat{k} \right) + \left( \hat{i} + 3\hat{j} - \hat{k} \right)$$
$$= \left( \lambda + 1 \right) \hat{i} + \left( \lambda + 3 \right) \hat{j} - \left( 2\lambda + 1 \right) \hat{k}$$

Since  $\vec{a} \perp (\lambda \vec{b} + \vec{c})$ ,  $\vec{a} \cdot (\lambda \vec{b} + \vec{c}) = 0$ 

$$\Rightarrow (2 \ \hat{i} - \hat{j} + \hat{k}) \cdot [(\lambda + 1) \ \hat{i} + (\lambda + 3) \ \hat{j} - (2\lambda + 1) \hat{k}] = 0$$
  
$$\Rightarrow 2 (\lambda + 1) - (\lambda + 3) - (2\lambda + 1) = 0$$
  
$$\Rightarrow \lambda = -2.$$

**Example 7** Find all vectors of magnitude  $10\sqrt{3}$  that are perpendicular to the plane of  $\hat{i} + 2\hat{j} + \hat{k}$  and  $-\hat{i} + 3\hat{j} + 4\hat{k}$ .

**Solution** Let  $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$  and  $\vec{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$ . Then

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ -1 & 3 & 4 \end{vmatrix} = \hat{i}(8-3) - \hat{j}(4+1) + \hat{k}(3+2) = 5\hat{i} - 5\hat{j} + 5\hat{k}$$
$$\Rightarrow \qquad \left| \vec{a} \times \vec{b} \right| = \sqrt{(5)^2 + (-5)^2 + (5)^2} = \sqrt{3(5)^2} = 5\sqrt{3}.$$

Therefore, unit vector perpendicular to the plane of  $\vec{a}$  and  $\vec{b}$  is given by

$$\frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|} = \frac{5\hat{i} - 5\hat{j} + 5\hat{k}}{5\sqrt{3}}$$

Hence, vectors of magnitude of  $10\sqrt{3}$  that are perpendicular to plane of  $\vec{a}$  and  $\vec{b}$ 

are 
$$\pm 10\sqrt{3}\left(\frac{5\hat{i}-5\hat{j}+5\hat{k}}{5\sqrt{3}}\right)$$
, i.e.,  $\pm 10(\hat{i}-\hat{j}+\hat{k})$ .

Long Answer (L.A.)

**Example 8** Using vectors, prove that  $\cos (A - B) = \cos A \cos B + \sin A \sin B$ .

**Solution** Let  $\widehat{OP}$  and  $\widehat{OQ}$  be unit vectors making angles A and B, respectively, with positive direction of *x*-axis. Then  $\angle QOP = A - B$  [Fig. 10.1]

We know  $\widehat{OP} = \overrightarrow{OM} + \overrightarrow{MP} = \hat{i} \cos A + \hat{j} \sin A$  and  $\widehat{OQ} = \overrightarrow{ON} + \overrightarrow{NQ} = \hat{i} \cos B + \hat{j} \sin B$ .

By definition  $\widehat{OP}$ .  $\widehat{OQ} = |\widehat{OP}| |\widehat{OQ}| \cos(A-B)$ 

$$=\cos\left(A-B\right)$$

... (1) 
$$\left( \because \left| \widehat{OP} \right| = 1 = \left| \widehat{OQ} \right| \right)$$

In terms of components, we have

$$\widehat{OP}. \ \widehat{OQ} = (\hat{i} \cos A + \hat{j} \sin A).(\hat{i} \cos B + \hat{j} \sin B)$$

$$= \cos A \cos B + \sin A \sin B \qquad \dots (2)$$
From (1) and (2), we get
$$\cos (A - B) = \cos A \cos B + \sin A \sin B.$$

$$X' \xrightarrow{P} M$$

**Example 9** Prove that in a  $\triangle$  ABC,  $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ , where *a*, *b*, *c* represent the magnitudes of the sides opposite to vertices A, B, C, respectively. Solution Let the three sides of the triangle BC, CA and AB be represented by  $\vec{a}, \vec{b}$  and  $\vec{c}$ , respectively [Fig. 10.2].  $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ . i.e.,  $\vec{a} + \vec{b} = -\vec{c}$ We have which pre cross multiplying by  $\vec{a}$ , and post cross multiplying by  $\vec{b}$ , gives  $\vec{a} \times \vec{b} = \vec{c} \times \vec{a}$  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$ and respectively. Therefore, a Fig. 10.2  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$  $\left|\vec{a} \times \vec{b}\right| = \left|\vec{b} \times \vec{c}\right| = \left|\vec{c} \times \vec{a}\right|$  $\Rightarrow$  $\left|\vec{a}\right|\left|\vec{b}\right|\sin\left(\pi-C\right) = \left|\vec{b}\right|\left|\vec{c}\right|\sin\left(\pi-A\right) = \left|\vec{c}\right|\left|\vec{a}\right|\sin\left(\pi-B\right)$  $\Rightarrow$  $ab \sin C = bc \sin A = ca \sin B$  $\Rightarrow$ Dividing by *abc*, we get

$$\frac{\sin C}{c} = \frac{\sin A}{a} = \frac{\sin B}{b} \text{ i.e. } \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

# **Objective Type Questions**

Choose the correct answer from the given four options in each of the Examples 10 to 21.

**Example 10** The magnitude of the vector  $6\hat{i} + 2\hat{j} + 3\hat{k}$  is

**Solution** (B) is the correct answer.

**Example 11** The position vector of the point which divides the join of points with position vectors  $\vec{a} + \vec{b}$  and  $2\vec{a} - \vec{b}$  in the ratio 1 : 2 is

(A) 
$$\frac{3\vec{a}+2\vec{b}}{3}$$
 (B)  $\vec{a}$  (C)  $\frac{5\vec{a}-\vec{b}}{3}$  (D)  $\frac{4\vec{a}+\vec{b}}{3}$ 

**Solution** (D) is the correct answer. Applying section formula the position vector of the required point is

$$\frac{2(\vec{a}+\vec{b})+1(2\vec{a}-\vec{b})}{2+1} = \frac{4\vec{a}+\vec{b}}{3}$$

**Example 12** The vector with initial point P (2, -3, 5) and terminal point Q(3, -4, 7) is

(A)  $\hat{i} - \hat{j} + 2\hat{k}$  (B)  $5\hat{i} - 7\hat{j} + 12\hat{k}$ 

(C) 
$$-\hat{i} + \hat{j} - 2\hat{k}$$
 (D) None of these

**Solution** (A) is the correct answer.

**Example 13** The angle between the vectors  $\hat{i} - \hat{j}$  and  $\hat{j} - \hat{k}$  is

(A)  $\frac{\pi}{3}$  (B)  $\frac{2\pi}{3}$  (C)  $\frac{-\pi}{3}$  (D)  $\frac{5\pi}{6}$ 

**Solution** (B) is the correct answer. Apply the formula  $\cos\theta = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|}$ .

**Example 14** The value of  $\lambda$  for which the two vectors  $2\hat{i} - \hat{j} + 2\hat{k}$  and  $3\hat{i} + \lambda\hat{j} + \hat{k}$  are perpendicular is

 (A)
 2
 (B)
 4
 (C)
 6
 (D)
 8

 Solution
 (D) is the correct answer.

**Example 15** The area of the parallelogram whose adjacent sides are  $\hat{i} + \hat{k}$  and  $2\hat{i} + \hat{j} + \hat{k}$  is

(A) 
$$\sqrt{2}$$
 (B)  $\sqrt{3}$  (C) 3 (D) 4

**Solution** (B) is the correct answer. Area of the parallelogram whose adjacent sides are  $\vec{a}$  and  $\vec{b}$  is  $|\vec{a} \times \hat{b}|$ .

**Example 16** If  $|\vec{a}| = 8$ ,  $|\vec{b}| = 3$  and  $|\vec{a} \times \vec{b}| = 12$ , then value of  $\vec{a} \cdot \vec{b}$  is

(A)  $6\sqrt{3}$  (B)  $8\sqrt{3}$  (C)  $12\sqrt{3}$  (D) None of these

**Solution** (C) is the correct answer. Using the formula  $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\sin\theta|$ , we get

$$\theta = \pm \frac{\pi}{6}$$

Therefore,  $\vec{a}.\vec{b} = |\vec{a}|.|\vec{b}|\cos\theta = 8 \times 3 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$ .

**Example 17** The 2 vectors  $\hat{j} + \hat{k}$  and  $3\hat{i} - \hat{j} + 4\hat{k}$  represents the two sides AB and AC, respectively of a  $\triangle$ ABC. The length of the median through A is

(A) 
$$\frac{\sqrt{34}}{2}$$
 (B)  $\frac{\sqrt{48}}{2}$  (C)  $\sqrt{18}$  (D) None of these

**Solution** (A) is the correct answer. Median  $\overrightarrow{AD}$  is given by

$$\left|\overrightarrow{\mathrm{AD}}\right| = \frac{1}{2} \left|3\hat{i} + \hat{j} + 5\hat{k}\right| = \frac{\sqrt{34}}{2}$$

**Example 18** The projection of vector  $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$  along  $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$  is

(A) 
$$\frac{2}{3}$$
 (B)  $\frac{1}{3}$  (C) 2 (D)  $\sqrt{6}$ 

**Solution** (A) is the correct answer. Projection of a vector  $\vec{a}$  on  $\vec{b}$  is

$$\frac{\vec{a}.\vec{b}}{\left|\vec{b}\right|} = \frac{(2\hat{i} - \hat{j} + \hat{k}).(\hat{i} + 2\hat{j} + 2\hat{k})}{\sqrt{1 + 4 + 4}} = \frac{2}{3}$$

**Example 19** If  $\vec{a}$  and  $\vec{b}$  are unit vectors, then what is the angle between  $\vec{a}$  and  $\vec{b}$  for  $\sqrt{3}\vec{a} - \vec{b}$  to be a unit vector?

(A) 
$$30^{\circ}$$
 (B)  $45^{\circ}$  (C)  $60^{\circ}$  (D)  $90^{\circ}$ 

Solution (A) is the correct answer. We have

$$(\sqrt{3}\vec{a}-\vec{b})^2 = 3\vec{a}^2 + \vec{b}^2 - 2\sqrt{3}\vec{a}.\vec{b}$$
$$\Rightarrow \vec{a}.\vec{b} = \frac{\sqrt{3}}{2} \Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = 30^\circ.$$

**Example 20** The unit vector perpendicular to the vectors  $\hat{i} - \hat{j}$  and  $\hat{i} + \hat{j}$  forming a right handed system is

(A) 
$$\hat{k}$$
 (B)  $-\hat{k}$  (C)  $\frac{i-j}{\sqrt{2}}$  (D)  $\frac{i+j}{\sqrt{2}}$ 

**Solution** (A) is the correct answer. Required unit vector is  $\frac{(\hat{i}-\hat{j})\times(\hat{i}+\hat{j})}{\left|(\hat{i}-\hat{j})\times(\hat{i}+\hat{j})\right|} = \frac{2\hat{k}}{2} = \hat{k}.$ 

Example 21 If  $|\vec{a}|=3$  and  $-1 \le k \le 2$ , then  $|k\vec{a}|$  lies in the interval (A) [0,6] (B) [-3,6] (C) [3,6] (D) [1,2] **Solution** (A) is the correct answer. The smallest value of  $|k\vec{a}|$  will exist at numerically smallest value of k, i.e., at k = 0, which gives  $|k\vec{a}| = |k| |\vec{a}| = 0 \times 3 = 0$ 

The numerically greatest value of k is 2 at which  $|k\vec{a}|=6$ .

### **10.3 EXERCISE**

## Short Answer (S.A.)

- 1. Find the unit vector in the direction of sum of vectors  $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$  and  $\vec{b} = 2\hat{j} + \hat{k}$ .
- 2. If  $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$  and  $\vec{b} = 2\hat{i} + \hat{j} 2\hat{k}$ , find the unit vector in the direction of

(i)  $6\vec{b}$  (ii)  $2\vec{a}-\vec{b}$ 

- 3. Find a unit vector in the direction of  $\overrightarrow{PQ}$ , where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively.
- 4. If  $\vec{a}$  and  $\vec{b}$  are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.
- 5. Using vectors, find the value of k such that the points (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.
- 6. A vector  $\vec{r}$  is inclined at equal angles to the three axes. If the magnitude of  $\vec{r}$  is  $2\sqrt{3}$  units, find  $\vec{r}$ .
- 7. A vector  $\vec{r}$  has magnitude 14 and direction ratios 2, 3, 6. Find the direction cosines and components of  $\vec{r}$ , given that  $\vec{r}$  makes an acute angle with x-axis.
- 8. Find a vector of magnitude 6, which is perpendicular to both the vectors  $2\hat{i} \hat{j} + 2\hat{k}$ and  $4\hat{i} - \hat{j} + 3\hat{k}$ .
- 9. Find the angle between the vectors  $2\hat{i} \hat{j} + \hat{k}$  and  $3\hat{i} + 4\hat{j} \hat{k}$ .
- 10. If  $\vec{a} + \vec{b} + \vec{c} = 0$ , show that  $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ . Interpret the result geometrically?
- 11. Find the sine of the angle between the vectors  $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$  and  $\vec{b} = 2\hat{i} 2\hat{j} + 4\hat{k}$ .

- 12. If A, B, C, D are the points with position vectors  $\hat{i} + \hat{j} \hat{k}$ ,  $2\hat{i} \hat{j} + 3\hat{k}$ ,  $2\hat{i} 3\hat{k}$ ,  $3\hat{i} 2\hat{j} + \hat{k}$ , respectively, find the projection of  $\overrightarrow{AB}$  along  $\overrightarrow{CD}$ .
- **13.** Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).
- 14. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

## Long Answer (L.A.)

- 15. Prove that in any triangle ABC,  $\cos A = \frac{b^2 + c^2 a^2}{2bc}$ , where *a*, *b*, *c* are the magnitudes of the sides opposite to the vertices A, B, C, respectively.
- 16. If  $\vec{a}, \vec{b}, \vec{c}$  determine the vertices of a triangle, show that  $\frac{1}{2} \left[ \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} \right]$  gives the vector area of the triangle. Hence deduce the condition that the three points  $\vec{a}, \vec{b}, \vec{c}$  are collinear. Also find the unit vector normal to the plane of the triangle.
- 17. Show that area of the parallelogram whose diagonals are given by  $\vec{a}$  and  $\vec{b}$  is

 $\frac{\left|\vec{a}\times\vec{b}\right|}{2}$ . Also find the area of the parallelogram whose diagonals are  $2\hat{i}-\hat{j}+\hat{k}$ and  $\hat{i}+3\hat{j}-\hat{k}$ .

**18.** If  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$  and  $\vec{b} = \hat{j} - \hat{k}$ , find a vector  $\vec{c}$  such that  $\vec{a} \times \vec{c} = \vec{b}$  and  $\vec{a} \cdot \vec{c} = 3$ . **Objective Type Questions** 

Choose the correct answer from the given four options in each of the Exercises from 19 to 33 (M.C.Q)

**19.** The vector in the direction of the vector  $\hat{i} - 2\hat{j} + 2\hat{k}$  that has magnitude 9 is

(A) 
$$\hat{i} - 2\hat{j} + 2\hat{k}$$
 (B)  $\frac{\hat{i} - 2\hat{j} + 2k}{3}$   
(C)  $3(\hat{i} - 2\hat{j} + 2\hat{k})$  (D)  $9(\hat{i} - 2\hat{j} + 2\hat{k})$ 

20. The position vector of the point which divides the join of points  $2\vec{a} - 3\vec{b}$  and  $\vec{a} + \vec{b}$  in the ratio 3 : 1 is

(A) 
$$\frac{3\vec{a}-2\vec{b}}{2}$$
 (B)  $\frac{7\vec{a}-8\vec{b}}{4}$  (C)  $\frac{3\vec{a}}{4}$  (D)  $\frac{5\vec{a}}{4}$ 

- 21. The vector having initial and terminal points as (2, 5, 0) and (-3, 7, 4), respectively is
  - (A)  $-\hat{i}+12\hat{j}+4\hat{k}$  (B)  $5\hat{i}+2\hat{j}-4\hat{k}$

(C) 
$$-5\hat{i}+2\hat{j}+4\hat{k}$$
 (D)  $\hat{i}+\hat{j}+\hat{k}$ 

- 22. The angle between two vectors  $\vec{a}$  and  $\vec{b}$  with magnitudes  $\sqrt{3}$  and 4, respectively, and  $\vec{a}.\vec{b} = 2\sqrt{3}$  is
  - (A)  $\frac{\pi}{6}$  (B)  $\frac{\pi}{3}$  (C)  $\frac{\pi}{2}$  (D)  $\frac{5\pi}{2}$
- 23. Find the value of  $\lambda$  such that the vectors  $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$  are orthogonal

(A) 0 (B) 1 (C) 
$$\frac{3}{2}$$
 (D)  $-\frac{5}{2}$ 

24. The value of  $\lambda$  for which the vectors  $3\hat{i} - 6\hat{j} + \hat{k}$  and  $2\hat{i} - 4\hat{j} + \lambda\hat{k}$  are parallel is

(A) 
$$\frac{2}{3}$$
 (B)  $\frac{3}{2}$  (C)  $\frac{5}{2}$  (D)  $\frac{2}{5}$ 

**25.** The vectors from origin to the points A and B are  $\vec{a} = 2\hat{i} - 3\hat{j} + 2\hat{k}$  and  $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ , respectively, then the area of triangle OAB is

(A) 340 (B) 
$$\sqrt{25}$$
 (C)  $\sqrt{229}$  (D)  $\frac{1}{2}\sqrt{229}$ 

**26.** For any vector  $\vec{a}$ , the value of  $(\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{j})^2 + (\vec{a} \times \hat{k})^2$  is equal to

(A) 
$$\vec{a}^2$$
 (B)  $3\vec{a}^2$  (C)  $4\vec{a}^2$  (D)  $2\vec{a}^2$ 

27. If  $|\vec{a}| = 10$ ,  $|\vec{b}| = 2$  and  $\vec{a} \cdot \vec{b} = 12$ , then value of  $|\vec{a} \times \vec{b}|$  is

(A) 5 (B) 10 (C) 14 (D) 16

**28.** The vectors  $\lambda \hat{i} + \hat{j} + 2\hat{k}$ ,  $\hat{i} + \lambda \hat{j} - \hat{k}$  and  $2\hat{i} - \hat{j} + \lambda \hat{k}$  are coplanar if

(A) 
$$\lambda = -2$$
 (B)  $\lambda = 0$  (C)  $\lambda = 1$  (D)  $\lambda = -1$ 

**29.** If  $\vec{a}, \vec{b}, \vec{c}$  are unit vectors such that  $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ , then the value of  $\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$  is

(A) 1 (B) 3 (C) 
$$-\frac{3}{2}$$
 (D) None of these

**30.** Projection vector of  $\vec{a}$  on  $\vec{b}$  is

(A) 
$$\left(\frac{\vec{a}.\vec{b}}{\left|\vec{b}\right|^2}\right)\vec{b}$$
 (B)  $\frac{\vec{a}.\vec{b}}{\left|\vec{b}\right|}$  (C)  $\frac{\vec{a}.\vec{b}}{\left|\vec{a}\right|}$  (D)  $\left(\frac{\vec{a}.\vec{b}}{\left|\vec{a}\right|^2}\right)\hat{b}$ 

**31.** If  $\vec{a}, \vec{b}, \vec{c}$  are three vectors such that  $\vec{a}+\vec{b}+\vec{c}=\vec{0}$  and  $|\vec{a}|=2$ ,  $|\vec{b}|=3$ ,  $|\vec{c}|=5$ , then value of  $\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$  is

- (A) 0 (B) 1 (C) -19 (D) 38
- **32.** If  $|\vec{a}|=4$  and  $-3 \le \lambda \le 2$ , then the range of  $|\lambda \vec{a}|$  is
  - (A) [0,8] (B) [-12,8] (C) [0,12] (D) [8,12]
- 33. The number of vectors of unit length perpendicular to the vectors  $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and  $\vec{b} = \hat{j} + \hat{k}$  is (A) one (B) two (C) three (D) infinite

Fill in the blanks in each of the Exercises from 34 to 40.

34. The vector  $\vec{a} + \vec{b}$  bisects the angle between the non-collinear vectors  $\vec{a}$  and  $\vec{b}$  if \_\_\_\_\_

- **35.** If  $\vec{r} \cdot \vec{a} = 0, \vec{r} \cdot \vec{b} = 0$ , and  $\vec{r} \cdot \vec{c} = 0$  for some non-zero vector  $\vec{r}$ , then the value of  $\vec{a} \cdot (\vec{b} \times \vec{c})$  is \_\_\_\_\_\_
- 36. The vectors  $\vec{a}=3i-2j+2\hat{k}$  and  $\vec{b}=-\hat{i}-2\hat{k}$  are the adjacent sides of a parallelogram. The acute angle between its diagonals is \_\_\_\_\_.
- **37.** The values of k for which  $|k\vec{a}| < |\vec{a}|$  and  $k\vec{a} + \frac{1}{2}\vec{a}$  is parallel to  $\vec{a}$  holds true are \_\_\_\_\_.
- **38.** The value of the expression  $\left|\vec{a} \times \vec{b}\right|^2 + (\vec{a} \cdot \vec{b})^2$  is \_\_\_\_\_.
- **39.** If  $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144$  and  $|\vec{a}| = 4$ , then  $|\vec{b}|$  is equal to \_\_\_\_\_
- **40.** If  $\vec{a}$  is any non-zero vector, then  $(\vec{a}.\hat{i})\hat{i} + (\vec{a}.\hat{j})\hat{j} + (\vec{a}.\hat{k})\hat{k}$  equals \_ State **True** or **False** in each of the following Exercises.
- **41.** If  $|\vec{a}| = |\vec{b}|$ , then necessarily it implies  $\vec{a} = \pm \vec{b}$ .
- 42. Position vector of a point P is a vector whose initial point is origin.
- **43.** If  $|\vec{a}+\vec{b}| = |\vec{a}-\vec{b}|$ , then the vectors  $\vec{a}$  and  $\vec{b}$  are orthogonal.
- 44. The formula  $(\vec{a}+\vec{b})^2 = \vec{a}^2 + \vec{b}^2 + 2\vec{a} \times \vec{b}$  is valid for non-zero vectors  $\vec{a}$  and  $\vec{b}$ .
- **45.** If  $\vec{a}$  and  $\vec{b}$  are adjacent sides of a rhombus, then  $\vec{a} \cdot \vec{b} = 0$ .