## CLASS X: MATHS

Chapter 6: Triangles

## Questions and Solutions | Exercise 6.1 - NCERT Books

Q1. Fill in the blanks using the correct word given in brackets :
(i) All circles are $\qquad$ . (congruent, similar)
(ii) All squares are $\qquad$ . (similar, congruent)
(iii) All $\qquad$ triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are
$\qquad$ and (b) their corresponding sides are $\qquad$ . (equal, proportional)

Sol. (i) All circles are similar.
(ii) All squares are similar.
(iii) All equilateral triangles are similar.
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are equal and (b) their corresponding sides are proportional.

Q2. Give two different examples of pair of
(i) Similar figures.
(ii) Non-similar figures.

Sol. (i) 1. Pair of equilateral triangles are similar figures.
2. Pair of squares are similar figures.
(ii) 1. One equilateral triangle and one isosceles triangle are non-similar.
2. Square and rectangle are non-similar.

Q3. State whether the following quadrilaterals are similar or not :


Sol. The two quadrilateral in figure are not similar because their corresponding angles are not equal.

## Questions and Solutions | Exercise 6.2 - NCERT Books

Q1. In figure, (i) and (ii), $\mathrm{DE} \| \mathrm{BC}$. Find EC in (i) and AD in (ii).


Sol. (i) In figure, (i) $\mathrm{DE} \| \mathrm{BC}$ (Given)
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ (By Basic Proportionality Theorem)
$\Rightarrow \frac{1.5}{3}=\frac{1}{\mathrm{EC}}$
$\{\because \mathrm{AD}=1.5 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}$ and $\mathrm{AE}=1 \mathrm{~cm}\}$
$\Rightarrow \mathrm{EC}=\frac{3}{1.5}=2 \mathrm{~cm}$
(ii) In fig. (ii) $\mathrm{DE} \| \mathrm{BC}$ (given)

So, $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{CE}} \Rightarrow \frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4}$
$\{\because \mathrm{BD}=7.2, \mathrm{AE}=1.8 \mathrm{~cm}$ and $\mathrm{CE}=5.4 \mathrm{~cm}\}$
$\mathrm{AD}=2.4 \mathrm{~cm}$

Q2. E and F are points on the sides PQ and PR respectively of a $\triangle P Q R$. For each of the following cases, State whether EF \| QR :
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$.

Saral

Sol. (i) In figure,

$$
\begin{aligned}
& \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=1.3, \\
& \frac{\mathrm{PF}}{\mathrm{FR}}=\frac{3.6}{2.4}=\frac{3}{2}=1.5 \\
\Rightarrow & \frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}} \\
\Rightarrow & \mathrm{EF} \text { is not } \| \mathrm{QR}
\end{aligned}
$$

(ii) In figure,

$$
\begin{aligned}
& \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{4}{4.5}=\frac{8}{9} \text { and } \frac{\mathrm{PF}}{\mathrm{FR}}=\frac{8}{9} \\
\Rightarrow & \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}} \Rightarrow \mathrm{EF} \| \mathrm{QR}
\end{aligned}
$$

(iii) In figure,

$$
\begin{aligned}
& \frac{\mathrm{PE}}{\mathrm{QE}}=\frac{0.18}{\mathrm{PQ}-\mathrm{PE}}=\frac{0.18}{1.28-0.18}=\frac{0.18}{1.10} \\
& =\frac{18}{110}=\frac{9}{55}=\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{0.36}{\mathrm{PR}-\mathrm{PF}} \\
& =\frac{0.36}{2.56-0.36}=\frac{0.36}{2.20}=\frac{9}{55}=\frac{\mathrm{PE}}{\mathrm{QE}}=\frac{\mathrm{PF}}{\mathrm{FR}}
\end{aligned}
$$

$\therefore \mathrm{EF} \| \mathrm{QR} \quad$ (By converse of Basic Proportionality Theorem)

Q3. In figure, if $L M \| C B$ and $L N \| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.


Sol. In $\triangle \mathrm{ACB}$ (see figure), $\mathrm{LM} \| \mathrm{CB}$ (Given)
$\Rightarrow \frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AL}}{\mathrm{LC}}$
(Basic Proportionality Theorem)
In $\triangle \mathrm{ACD}$ (see figure), $\mathrm{LN} \| \mathrm{CD}$ (Given)
$\Rightarrow \frac{\mathrm{AN}}{\mathrm{ND}}=\frac{\mathrm{AL}}{\mathrm{LC}}$
(Basic Proportionality Theorem)
From (1) and (2), we get

$$
\begin{aligned}
& \frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{ND}} \\
\Rightarrow & \frac{\mathrm{AM}}{\mathrm{AM}+\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{AN}+\mathrm{ND}} \Rightarrow \frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}
\end{aligned}
$$

Q4. In figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DF} \| \mathrm{AE}$. Prove that $\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}$.


Sol. In $\triangle \mathrm{ABE}$,
$\mathrm{DF} \| \mathrm{AE}$ (Given)
$\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BF}}{\mathrm{FE}} \ldots$ (i) (Basic Proportionality Theorem)
In $\triangle \mathrm{ABC}$,
$\mathrm{DE} \| \mathrm{AC} \quad$ (Given)
$\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BE}}{\mathrm{EC}} \ldots . .$. (ii) (Basic Proportionality Theorem)

From (i) and (ii), we get
$\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}} \quad$ Hence proved.

Q5. In figure, $\mathrm{DE} \| \mathrm{OQ}$ and $\mathrm{DF} \| \mathrm{OR}$. Show that $\mathrm{EF} \| \mathrm{QR}$.


Sol. In figure, DE \| OQ and DF \| OR, then by Basic Proportionality Theorem,
We have $\quad \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PD}}{\mathrm{DO}}$
and $\quad \frac{P F}{F R}=\frac{P D}{D O}$
From (1) and (2), $\quad \frac{P E}{E Q}=\frac{P F}{F R}$
Now, in $\triangle \mathrm{PQR}$, we have proved that
$\Rightarrow \frac{P E}{E Q}=\frac{P F}{F R}$
EF \| QR
(By converse of Basic Proportionality Theorem)

Q6. In figure, $\mathrm{A}, \mathrm{B}$ and C are points on $\mathrm{OP}, \mathrm{OQ}$ and OR respectively such that $\mathrm{AB} \| \mathrm{PQ}$ and AC $\|$ PR. Show that BC \| QR.


Sol. In $\triangle \mathrm{POQ}$,
$\mathrm{AB} \| \mathrm{PQ}$ (given)
$\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OA}}{\mathrm{AP}} \ldots$ (i) (Basic Proportionality Theorem)
In $\triangle \mathrm{POR}$,
$\mathrm{AC} \mid \mathrm{PR}$ (given)
$\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}} \ldots$ (ii) (Basic Proportionality Theorem)
From (i) and (ii), we get

$$
\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OC}}{\mathrm{CR}}
$$

$\therefore$ By converse of Basic Proportionality Theorem, $\mathrm{BC} \| \mathrm{QR}$

Q7. Using Theorem 6.1, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.

Sol. In $\triangle \mathrm{ABC}, \mathrm{D}$ is mid point of AB (see figure)

i.e., $\frac{\mathrm{AD}}{\mathrm{DB}}=1$

Straight line $\ell \| B C$.
Line $\ell$ is drawn through D and it meets AC at E .
By Basic Proportionality Theorem

$$
\begin{aligned}
& \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \Rightarrow \frac{\mathrm{AE}}{\mathrm{EC}}=1[\text { From (1)] } \\
\Rightarrow \mathrm{AE} & =\mathrm{EC} \Rightarrow \mathrm{E} \text { is mid point of } \mathrm{AC} .
\end{aligned}
$$

Q8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

Sol. In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are mid points of the sides AB and AC respectively.
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=1$
and $\frac{\mathrm{AE}}{\mathrm{EC}}=1$ (see figure)

$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \Rightarrow \mathrm{DE} \| \mathrm{BC}$
(By Converse of Basic Proportionality Theorem)

Q9. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O .
Show that $\frac{A O}{B O}=\frac{C O}{D O}$.
Sol. We draw EOF \| AB (also $\| \mathrm{CD}$ ) (see figure)
In $\triangle \mathrm{ACD}, \quad \mathrm{OE} \| \mathrm{CD}$
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}}$.
In $\triangle \mathrm{ABD}, \mathrm{OE}| | \mathrm{BA}$
$\Rightarrow \frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathrm{DO}}{\mathrm{OB}}$

$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{OB}}{\mathrm{OD}}$
From (1) and (2)

$$
\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}},
$$

i.e., $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$.

Q10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$. Show that ABCD is a trapezium.

Sol. In figure $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$
$\Rightarrow \frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
...(1) (given)
Through O, we draw
OE || BA
OE meets AD at E .
From $\triangle \mathrm{DAB}$,


EO || AB
$\Rightarrow \frac{D E}{E A}=\frac{D O}{O B}$ (by Basic Proportionality Theorem)
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
From (1) and (2),

$$
\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{AE}}{\mathrm{ED}} \Rightarrow \mathrm{OE} \| \mathrm{CD}
$$

(by converse of basic proportionality theorem)
Now, we have BA || OE
and
OE \| CD
$\Rightarrow \quad \mathrm{AB} \| \mathrm{CD}$
$\Rightarrow$ Quadrilateral ABCD is a trapezium.

## Questions and Solutions | Exercise 6.3 - NCERT Books

Q1. State which pairs of triangles in figure, are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

(i)
(ii)

(iii)

(iv)

(v)

(vi)

Sol. (i) Yes. $\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}, \angle \mathrm{B}=\angle \mathrm{Q}=80^{\circ}$,
$\angle \mathrm{C}=\angle \mathrm{R}=40^{\circ}$
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
By AAA similarity criterion
(ii) Yes.
$\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{BC}}{\mathrm{RP}}=\frac{2.5}{5}=\frac{1}{2}, \frac{\mathrm{CA}}{\mathrm{PQ}}=\frac{3}{6}=\frac{1}{2}$
Therefore, $\triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$.
By SSS similarity criterion.
(iii) No.
$\frac{\mathrm{MP}}{\mathrm{DE}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{LP}}{\mathrm{DF}}=\frac{3}{6}=\frac{1}{2}, \frac{\mathrm{LM}}{\mathrm{EF}}=\frac{2.7}{5} \neq \frac{1}{2}$
i.e., $\frac{\mathrm{MP}}{\mathrm{DE}}=\frac{\mathrm{LP}}{\mathrm{DF}} \neq \frac{\mathrm{LM}}{\mathrm{EF}}$

Thus, the two triangles are not similar.
(iv) Yes,

$$
\frac{\mathrm{MN}}{\mathrm{QP}}=\frac{\mathrm{ML}}{\mathrm{QR}}=\frac{1}{2}
$$

and $\angle \mathrm{NML}=\angle \mathrm{PQR}=70^{\circ}$
By SAS similarity criterion
$\Delta \mathrm{NML} \sim \triangle \mathrm{PQR}$
(v) No,
$\frac{\mathrm{AB}}{\mathrm{FD}} \neq \frac{\mathrm{AC}}{\mathrm{FE}}$
Thus, the two triangles are not similar
(vi) In triangle $\mathrm{DEF} \angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$

$$
\begin{aligned}
& 70^{\circ}+80^{\circ}+\angle \mathrm{F}=180^{\circ} \\
& \angle \mathrm{F}=30^{\circ}
\end{aligned}
$$

In triangle PQR
$\angle \mathrm{P}+80^{\circ}+30^{\circ}=180^{\circ}$
$\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{E}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{D}=\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{R}=30^{\circ}$
By AAA similarity criterion,
$\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$.

Q2. In figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$.


Sol. From figure,

$$
\Rightarrow \quad \angle \mathrm{DOC}+125^{\circ}=180^{\circ} \quad \begin{aligned}
& \angle \mathrm{DOC}=180^{\circ}-125^{\circ}=55^{\circ} \\
& \angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}
\end{aligned}
$$

(Sum of three angles of $\triangle \mathrm{ODC}$ )
$\Rightarrow \angle \mathrm{DCO}+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}+125^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}=180^{\circ}-125^{\circ}=55^{\circ}$
Now, we are given that $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}$
$\Rightarrow \angle \mathrm{OCD}=\angle \mathrm{OAB}$
$\Rightarrow \angle \mathrm{OAB}=\angle \mathrm{OCD}=\angle \mathrm{DCO}=55^{\circ}$
i.e., $\angle \mathrm{OAB}=55^{\circ}$

Hence, we have
$\angle \mathrm{DOC}=55^{\circ}, \angle \mathrm{DCO}=55^{\circ}, \angle \mathrm{OAB}=55^{\circ}$

Q3. Diagonals AC and BD of a trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$ intersect each other at the point
O. Using a similarity criterion for two triangles, show that $\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$.

Sol. In figure, $\mathrm{AB} \| \mathrm{DC}$
$\Rightarrow \angle 1=\angle 3, \angle 2=\angle 4$
(Alternate interior angles)
Also $\angle \mathrm{DOC}=\angle \mathrm{BOA}$
(Vertically opposite angles)

$\Rightarrow \Delta \mathrm{OCD} \sim \Delta \mathrm{OAB} \Rightarrow \frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{OD}}{\mathrm{OB}}$
(Ratios of the corresponding sides of the similar triangle)
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$ (Taking reciprocals)

Q4. In figure, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$ and $\angle 1=\angle 2$. Show that $\triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$.


Sol. In figure, $\angle 1=\angle 2$ (Given)
$\Rightarrow \mathrm{PQ}=\mathrm{PR}$
(Sides opposite to equal angles of $\triangle \mathrm{PQR}$ )
We are given that
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$
$\Rightarrow \frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PQ}} \quad(\because \mathrm{PQ}=\mathrm{PR}$ proved $)$
$\Rightarrow \quad \frac{\mathrm{QS}}{\mathrm{QR}}=\frac{\mathrm{PQ}}{\mathrm{QT}} \quad$ (Taking reciprocals).
Now, in $\triangle P Q S$ and $\triangle T Q R$, we have
$\angle \mathrm{PQS}=\angle \mathrm{TQR} \quad($ Each $=\angle 1)$
and $\frac{\mathrm{QS}}{\mathrm{QR}}=\frac{\mathrm{PQ}}{\mathrm{QT}}$
(By (1))
Therefore, by SAS similarity criterion, we have
$\Delta \mathrm{PQS} \sim \Delta \mathrm{TQR}$.

Q5. $S$ and $T$ are points on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim$ $\Delta$ RTS.

Sol. In figure, We have $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RTS}$ in which
$\angle \mathrm{RPQ}=\angle \mathrm{RTS}$ (Given)
$\angle \mathrm{PRQ}=\angle \mathrm{SRT}($ Each $=\angle \mathrm{R})$


Then by AA similarity criterion, we have
$\Delta \mathrm{RPQ} \sim \Delta \mathrm{RTS}$

Q6. In figure, if $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.


Sol. In figure,

$$
\begin{aligned}
& \Delta \mathrm{ABE} \cong \triangle \mathrm{ACD} \\
\Rightarrow & \mathrm{AB}=\mathrm{AC} \text { and } \mathrm{AE}=\mathrm{AD} \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{AC}}=1 \text { and } \frac{\mathrm{AD}}{\mathrm{AE}}=1 \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AE}}
\end{aligned} \quad(\mathrm{CPCT}), \quad(\text { Each }=1),
$$

Now, in $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$, we have

$$
\frac{\mathrm{AD}}{\mathrm{AE}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

(proved)
i.e., $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
and also $\angle \mathrm{DAE}=\angle \mathrm{BAC} \quad($ Each $=\angle \mathrm{A})$
$\Rightarrow \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}($ By SAS similarity criterion $)$

Q7. In figure, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point $P$. Show that :
(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$
(iii) $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) $\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$


Sol. (i) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$,
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (vertically opposite angles)
$\angle \mathrm{AEP}=\angle \mathrm{CDP}=90^{\circ}$
$\therefore \quad$ By AA similarity
$\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$,
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (common)
$\angle \mathrm{ADB}=\angle \mathrm{CEB}=90^{\circ}$
$\therefore$ By AA similarity
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{ADB}$,
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (common)
$\angle \mathrm{AEP}=\angle \mathrm{ADB}=90^{\circ}$
$\therefore$ By AA similarity
$\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$,
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (common)
$\angle \mathrm{PDC}=\angle \mathrm{BEC}=90^{\circ}$
$\therefore$ By AA similarity
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Q8. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F . Show that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$.

Sol.


In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{EAB}=\angle \mathrm{BCF}$ (opp. angles of parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles, $\mathrm{As} \mathrm{AE} \| \mathrm{BC}$ )
$\therefore$ By AA similarity

$$
\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}
$$

Q9. In figure, $A B C$ and AMP are two right triangles, right angled at $B$ and $M$ respectively. Prove that:
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$


Sol.

(i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$
$\angle \mathrm{CAB}=\angle \mathrm{PAM}$ (common)
$\angle \mathrm{ABC}=\angle \mathrm{AMP}=90^{\circ}$
$\therefore$ By AA similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) As $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (Proved above)

$$
\therefore \quad \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}
$$

Q10. CD and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}$, show that :
(i) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
(ii) $\triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$
(iii) $\Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}$

Sol. $\triangle \mathrm{ABC} \sim \triangle \mathrm{FEG}$
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{EGF}$
$\Rightarrow \frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{EGF}$

$\Rightarrow \angle \mathrm{DCB}=\angle \mathrm{HGE}$
Also, $\angle \mathrm{B}=\angle \mathrm{E}$
$\Rightarrow \angle \mathrm{DBC}=\angle \mathrm{HEG}$
From (1) and (2), we have
$\Rightarrow \Delta \mathrm{DCB} \sim \Delta \mathrm{HGE}$
Similarly, we have

$$
\Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}
$$

Now, $\triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$

$\Rightarrow \frac{\mathrm{DC}}{\mathrm{HG}}=\frac{\mathrm{CA}}{\mathrm{GF}} \Rightarrow \frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$

Q11. In figure, $E$ is a point on side $C B$ produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D$ $\perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\Delta \mathrm{ABD} \sim \Delta \mathrm{ECF}$.


Sol. In figure,
We are given that $\triangle \mathrm{ABC}$ is isosceles.
and $\quad \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \quad \angle \mathrm{B}=\angle \mathrm{C}$
For triangles ABD and ECF ,

$$
\begin{array}{rll} 
& & \angle \mathrm{ABD}=\angle \mathrm{ECF} \quad\{\text { from }(1)\} \\
\text { and } & \angle \mathrm{ADB}=\angle \mathrm{EFC} \quad\left\{\text { each }=90^{\circ}\right\} \\
\Rightarrow & & \Delta \mathrm{ABD} \sim \Delta \mathrm{ECF}(\mathrm{AA} \text { similarity })
\end{array}
$$

Q12. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.


Sol. Given. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$. AD and PM are their medians respectively.

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}} \tag{1}
\end{equation*}
$$

To prove. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
Construction : Produce AD to E such that $\mathrm{AD}=\mathrm{DE}$ and produce PM to N such that $\mathrm{PM}=\mathrm{MN}$. Join BE, CE, QN, RN.


Proof : Quadrilaterals ABEC and PQNR are parallelograms because their diagonals bisect each other at D and M respectively.
$\Rightarrow \mathrm{BE}=\mathrm{AC}$ and $\mathrm{QN}=\mathrm{PR}$.
$\Rightarrow \frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AC}}{\mathrm{PR}} \Rightarrow \frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
i.e., $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QN}}$

From (1), $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}=\frac{\mathrm{AE}}{\mathrm{PN}}$
i.e., $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AE}}{\mathrm{PN}}$

From (2) and (3), we have

$$
\begin{align*}
& \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QN}}=\frac{\mathrm{AE}}{\mathrm{PN}} \\
\Rightarrow & \Delta \mathrm{ABE} \sim \triangle \mathrm{PQN} \Rightarrow \angle 1=\angle 2 \tag{4}
\end{align*}
$$

Similarly, we can prove
$\Rightarrow \triangle \mathrm{ACE} \sim \triangle \mathrm{PRN} \Rightarrow \angle 3=\angle 4$
Adding (4) and (5), we have
$\Rightarrow \angle 1+\angle 3=\angle 2+\angle 4 \Rightarrow \angle \mathrm{~A}=\angle \mathrm{P}$
$\Rightarrow \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (SAS similarity criterion)

Q13. D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{CA}^{2}=$ CB. CD.

Sol. For $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DAC}$, We have

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{ADC} \\
\text { and } & \angle \mathrm{ACB}=\angle \mathrm{DCA} \\
\Rightarrow & \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DAC} \\
\Rightarrow & \frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{CB}}{\mathrm{CA}} \\
\Rightarrow & \frac{\mathrm{CA}}{\mathrm{CD}}=\frac{\mathrm{CB}}{\mathrm{CA}} \\
\Rightarrow & \mathrm{CA} \times \mathrm{CA}=\mathrm{CB} \times \mathrm{CD}^{\mathrm{B}} \\
\Rightarrow & \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}
\end{aligned}
$$

Q14. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and QR and median PM of $\triangle \mathrm{PQR}$ (see figure). Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Sol.


As, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$ (Given)
So, $\quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

$$
\left\{\because \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}}=\frac{\mathrm{BD}}{\mathrm{QM}}\right\}
$$

$\therefore$ By SSS similarity,
$\Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}$.

As, $\triangle \mathrm{ABD} \sim \Delta \mathrm{PQM}$.
$\therefore \quad \angle \mathrm{ABD}=\angle \mathrm{PQM}$
Now, In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \text { (Given) } \\
& \angle \mathrm{ABC}=\angle \mathrm{PQR} \text { (Proved above) }
\end{aligned}
$$

$\therefore$ By SAS similarity
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Q15. A vertical stick of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Sol.

$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
$\frac{6}{x}=\frac{4}{28}$
$\Rightarrow \mathrm{x}=42 \mathrm{~m}$
Q16. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, prove that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$.

