CLASS X: MATHS
Chapter 7: Coordinate Geometry

Questions and Solutions | Exercise 7.1-NCERT Books

Q1. Find the distance between the following pairs of points :
(a) $(2,3),(4,1)$
(b) $(-5,7),(-1,3)$
(c) $(\mathrm{a}, \mathrm{b}),(-\mathrm{a},-\mathrm{b})$

Sol.(a) The given points are : A (2, 3), B (4, 1).
Required distance $=\mathrm{AB}=\mathrm{BA}=\sqrt{\left(\mathrm{x}_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\mathrm{AB}=\sqrt{(4-2)^{2}+(1-3)^{2}}=\sqrt{(2)^{2}+(-2)^{2}}$
$=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$ units
(b) Here $\mathrm{x}_{1}=-5, \mathrm{y}_{1}=7$ and $\mathrm{x}_{2}=-1, \mathrm{y}_{2}=3$
\therefore The required distance
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{[-1-(-5)]^{2}+(3-7)^{2}}$
$=\sqrt{(-1+5)^{2}+(-4)^{2}}$
$=\sqrt{16+16}=\sqrt{32}=\sqrt{2 \times 16}$
$=4 \sqrt{2}$ units
(c) Here $\mathrm{x}_{1}=\mathrm{a}, \mathrm{y}_{1}=\mathrm{b}$ and $\mathrm{x}_{2}=-\mathrm{a}, \mathrm{y}_{2}=-\mathrm{b}$
\therefore The required distance

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-a-a)^{2}+(-b-b)^{2}} \\
& =\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}} \\
& =\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{\left(a^{2}+b^{2}\right)} \text { units }
\end{aligned}
$$

Q2. Find the distance between the points $(0,0)$ and $(36,15)$. Can you now find the distance between the tow towns A and B discussed in section 7.2.

Sol. Part-I

Let the points be $\mathrm{A}(0,0)$ and $\mathrm{B}(36,15)$

$$
\begin{aligned}
& \therefore \quad \mathrm{AB}=\sqrt{(36-0)^{2}+(15-0)^{2}} \\
&=\sqrt{(36)^{2}+(15)^{2}}=\sqrt{1296+225} \\
&=\sqrt{1521}=\sqrt{39^{2}}=39
\end{aligned}
$$

Part-II

We have $\mathrm{A}(0,0)$ and $\mathrm{B}(36,15)$ as the positions of two towns

Here $\mathrm{x}_{1}=0, \mathrm{x}_{2}=36$ and $\mathrm{y}_{1}=0, \mathrm{y}_{2}=15$
$\therefore \quad \mathrm{AB}=\sqrt{(36-0)^{2}+(15-0)^{2}}=39 \mathrm{~km}$

Q3. Determine if the points $(1,5),(2,3)$ and $(-2,-11)$ are collinear.
Sol. The given points are :
$\mathrm{A}(1,5), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-11)$.
Let us calculate the distance : AB, BC and CA by using distance formula.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(2-1)^{2}+(3-5)^{2}}=\sqrt{(1)^{2}+(-2)^{2}} \\
& =\sqrt{1+4}=\sqrt{5} \text { units } \\
\mathrm{BC} & =\sqrt{(-2-2)^{2}+(-11-3)^{2}}=\sqrt{(-4)^{2}+(-14)^{2}} \\
& =\sqrt{16+196}=\sqrt{212}=2 \sqrt{53} \text { units }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{CA} & =\sqrt{(-2-1)^{2}+(-11-5)^{2}} \\
& =\sqrt{(-3)^{2}+(-16)^{2}}=\sqrt{9+256}=\sqrt{265} \\
& =\sqrt{5} \times \sqrt{53} \text { units }
\end{aligned}
$$

From the above we see that : $\mathrm{AB}+\mathrm{BC} \neq \mathrm{CA}$
Hence the above stated points $\mathrm{A}(1,5), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-11)$ are not collinear.
Q4. Check whether $(5,-2),(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.
Sol. Let the points be $\mathrm{A}(5,-2), \mathrm{B}(6,4)$ and $\mathrm{C}(7,-2)$.

$$
\begin{aligned}
\therefore \quad \mathrm{AB} & =\sqrt{(6-5)^{2}+[4-(-2)]^{2}} \\
& =\sqrt{(1)^{2}+(6)^{2}}=\sqrt{1+36}=\sqrt{37} \\
\mathrm{BC} & =\sqrt{(7-6)^{2}+(-2-4)^{2}} \\
& =\sqrt{(1)^{2}+(-6)^{2}}=\sqrt{1+36}=\sqrt{37} \\
\mathrm{AC} & =\sqrt{(7-5)^{2}+(-2-(-2))^{2}} \\
& =\sqrt{(+2)^{2}+(0)^{2}}=\sqrt{4+0}=2
\end{aligned}
$$

We have $\mathrm{AB}=\mathrm{BC} \neq \mathrm{AC}$.
$\therefore \quad \triangle \mathrm{ABC}$ is an isosceles triangle.
Q5. In a classroom, 4 friends are seated at the points A, B, C and D as shown in fig. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, "Don't you think ABCD is a rectangle?" Chameli disagrees. Using distance formula, find which of them is correct.

Sol. Let the number of horizontal columns represent the x-coordinates whereas the vertical rows represent the y -coordinates.
$\therefore \quad$ The points are : $\mathrm{A}(3,4), \mathrm{B}(6,7), \mathrm{C}(9,4)$ and $\mathrm{D}(6,1)$
$\therefore \quad \mathrm{AB}=\sqrt{(6-3)^{2}+(7-4)^{2}}$

$$
=\sqrt{(3)^{2}+(3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
$$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{(9-6)^{2}+(4-7)^{2}} \\
& =\sqrt{3^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

$$
\mathrm{CD}=\sqrt{(6-9)^{2}+(1-4)^{2}}
$$

$$
=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
$$

$$
\begin{aligned}
\mathrm{AD} & =\sqrt{(6-3)^{2}+(1-4)^{2}} \\
& =\sqrt{(3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Since, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$ i.e., All the four sides are equal
Also $\mathrm{AC}=\sqrt{(9-3)^{2}+(4-4)^{2}}$
$=\sqrt{(+6)^{2}+(0)^{2}}=6$ and
$\mathrm{BD}=\sqrt{(6-6)^{2}+(1-7)^{2}}=\sqrt{(0)^{2}+(-6)^{2}}=6$
i.e., $\mathrm{BD}=\mathrm{AC}$
\Rightarrow Both the diagonals are also equal.
$\therefore \mathrm{ABCD}$ is a square.
Thus, Chameli is correct as ABCD is not a rectangle.
Q6. Name the quadrilateral formed, if any, by the following points, and give reasons for your answer.
(i) $(-1,-2),(1,0),(-1,2),(-3,0)$
(ii) $(-3,5),(3,1),(0,3),(-1,-4)$
(iii) $(4,5),(7,6),(4,3),(1,2)$

Sol. (i) A($-1,-2$), $\mathrm{B}(1,0), \mathrm{C}(-1,2), \mathrm{D}(-3,0)$
Determine distances : $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{AC}$ and BD .
$\mathrm{AB}=\sqrt{(1+1)^{2}+(0+2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{BC}=\sqrt{(-1-1)^{2}+(2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{CD}=\sqrt{(-3+1)^{2}+(0-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{DA}=\sqrt{(-1+3)^{2}+(-2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
The sides of the quadrilateral are equal
$\mathrm{AC}=\sqrt{(-1+1)^{2}+(2+2)^{2}}=\sqrt{0+16}=4$
$\mathrm{BD}=\sqrt{(-3-1)^{2}+(0-0)^{2}}=\sqrt{16+0}=4$
Diagonal AC = Diagonal BD
From (1) and (2) we conclude that ABCD is a square.
(ii) Let the points be $\mathrm{A}(-3,5), \mathrm{B}(3,1), \mathrm{C}(0,3)$ and $\mathrm{D}(-1,-4)$.

$$
\begin{aligned}
\therefore \mathrm{AB} & =\sqrt{[3-(-3)]^{2}+(1-5)^{2}} \\
& =\sqrt{6^{2}+(-4)^{2}}=\sqrt{36+16} \\
& =\sqrt{52}=2 \sqrt{13} \\
\mathrm{BC} & =\sqrt{(0-3)^{2}+(3-1)^{2}}=\sqrt{9+4}=\sqrt{13} \\
\mathrm{CD} & =\sqrt{(-1-0)^{2}+(-4-3)^{2}}=\sqrt{(-1)^{2}+(-7)^{2}} \\
& =\sqrt{1+49}=\sqrt{50} \\
\mathrm{DA} & =\sqrt{[-3-(-1)]^{2}+[5-(-4)]^{2}} \\
& =\sqrt{(-2)^{2}+(9)^{2}} \\
& =\sqrt{4+81}=\sqrt{85} \\
\mathrm{AC} & =\sqrt{[0-(-3)]^{2}+(3-5)^{2}}=\sqrt{(3)^{2}+(-2)^{2}} \\
& =\sqrt{9+4}=\sqrt{13} \\
\mathrm{BD} & =\sqrt{(-1-3)^{2}+(-4-1)^{2}}=\sqrt{(-4)^{2}+(-5)^{2}} \\
& =\sqrt{16+25}=\sqrt{41}
\end{aligned}
$$

We see that $\sqrt{13}+\sqrt{13}=2 \sqrt{13}$
i.e., $\mathrm{AC}+\mathrm{BC}=\mathrm{AB}$
$\Rightarrow \mathrm{A}, \mathrm{B}$ and C are collinear. Thus, ABCD is not a quadrilateral.
(iii) Let the points be $\mathrm{A}(4,5), \mathrm{B}(7,6), \mathrm{C}(4,3)$ and $\mathrm{D}(1,2)$.

$$
\begin{aligned}
\therefore \mathrm{AB} & =\sqrt{(7-4)^{2}+(6-5)^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{10} \\
\mathrm{BC} & =\sqrt{(4-7)^{2}+(3-6)^{2}} \\
& =\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{18}
\end{aligned} \begin{aligned}
\mathrm{CD} & =\sqrt{(1-4)^{2}+(2-3)^{2}} \\
& =\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{10} \\
\mathrm{DA} & =\sqrt{(1-4)^{2}+(2-5)^{2}}=\sqrt{9+9}=\sqrt{18} \\
\mathrm{AC} & =\sqrt{(4-4)^{2}+(3-5)^{2}}=\sqrt{0+(-2)^{2}}=2 \\
\mathrm{BD} & =\sqrt{(1-7)^{2}+(2-6)^{2}}=\sqrt{36+16}=\sqrt{52}
\end{aligned}
$$

Since, $\mathrm{AB}=\mathrm{CD}, \mathrm{BC}=\mathrm{DA}$ [opposite sides of the quadrilateral are equal]
And $\mathrm{AC} \neq \mathrm{BD} \quad \Rightarrow$ Diagonals are unequal.
$\therefore \mathrm{ABCD}$ is a parallelogram.
Q7. Find the point on the x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.
Sol. We know that any point on x-axis has its ordinate $=0$
Let the required point be $\mathrm{P}(\mathrm{x}, 0)$.
Let the given points be $\mathrm{A}(2,-5)$ and $\mathrm{B}(-2,9)$
$\therefore \quad \mathrm{AP}=\sqrt{(\mathrm{x}-2)^{2}+5^{2}}=\sqrt{\mathrm{x}^{2}-4 \mathrm{x}+4+25}$

$$
=\sqrt{x^{2}-4 x+29}
$$

$\mathrm{BP}=\sqrt{[\mathrm{x}-(-2)]^{2}+(-9)^{2}}=\sqrt{(\mathrm{x}+2)^{2}+(-9)^{2}}$

$$
=\sqrt{x^{2}+4 x+4+81}=\sqrt{x^{2}+4 x+85}
$$

Since, A and B are equidistant from P,
$\therefore \quad \mathrm{AP}=\mathrm{BP}$
$\Rightarrow \sqrt{x^{2}-4 x+29}=\sqrt{x^{2}+4 x+85}$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+29=\mathrm{x}^{2}+4 \mathrm{x}+85$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}-\mathrm{x}^{2}-4 \mathrm{x}=85-29$
$\Rightarrow-8 \mathrm{x}=56 \Rightarrow \mathrm{x}=\frac{56}{-8}=-7$
\therefore The required point is $(-7,0)$
Q8. Find the values of y for which the distance between the points $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, \mathrm{y})$ is 10 units.
Sol. Distance between $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, \mathrm{y})=10$ units
$\Rightarrow \sqrt{(10-2)^{2}+(y+3)^{2}}=10$
$\Rightarrow 64+(\mathrm{y}+3)^{2}=100$
$\Rightarrow(y+3)^{2}=36$
$\Rightarrow y^{2}+6 y+9=36$
$y^{2}+6 y-27=0$
$\Rightarrow y^{2}+9 y-3 y-27=0$
$\Rightarrow y(y+9)-3(y+9)=0$
$\Rightarrow(\mathrm{y}+9)(\mathrm{y}-3)=0$
$\Rightarrow y+9=0$ or $y-3=0$
$\Rightarrow y=-9$ or 3
Hence, there can be two values of y which are -9 and 3 .

Q9. If $\mathrm{Q}(0,1)$ is equidistant from $\mathrm{P}(5,-3)$ and $\mathrm{R}(\mathrm{x}, 6)$, find the values of x . Also find the distances QR and PR.

Sol. Here, $\mathrm{QP}=\sqrt{(5-0)^{2}+[(-3)-1]^{2}}=\sqrt{5^{2}+(-4)^{2}}$

$$
=\sqrt{25+16}=\sqrt{41}
$$

$\mathrm{QR}=\sqrt{(\mathrm{x}-0)^{2}+(6-1)^{2}}=\sqrt{\mathrm{x}^{2}+5^{2}}=\sqrt{\mathrm{x}^{2}+25}$
$\because \quad \mathrm{QP}=\mathrm{QR}$
$\therefore \quad \sqrt{41}=\sqrt{\mathrm{x}^{2}+25}$
Squaring both sides, we have $\mathrm{x}^{2}+25=41$
$\Rightarrow \mathrm{x}^{2}+25-41=0$
$\Rightarrow \mathrm{x}^{2}-16=0 \Rightarrow \mathrm{x}= \pm \sqrt{16}= \pm 4$
Thus, the point R is $(4,6)$ or $(-4,6)$
Now,
$\mathrm{QR}=\sqrt{[(\pm 4)-(0)]^{2}+(6-1)^{2}}=\sqrt{16+25}=\sqrt{41}$
and $\mathrm{PR}=\sqrt{(\pm 4-5)^{2}+(6+3)^{2}}$
$\Rightarrow \mathrm{PR}=\sqrt{(-4-5)^{2}+(6+3)^{2}}$
or $\sqrt{(4-5)^{2}+(6+3)^{2}}$
$\Rightarrow \mathrm{PR}=\sqrt{(-9)^{2}+9^{2}}$ or $\sqrt{1+81}$
$\Rightarrow \mathrm{PR}=\sqrt{2 \times 9^{2}}$ or $\sqrt{82}$
$\Rightarrow \mathrm{PR}=9 \sqrt{2}$ or $\sqrt{82}$

Q10. Find a relation between x and y such that the point (x, y) is equidistant from the point $(3,6)$ and $(-3,4)$.
Sol. $A(3,6)$ and $B(-3,4)$ are the given points. Point $P(x, y)$ is equidistant from the points A and B.
$\Rightarrow \mathrm{PA}=\mathrm{PB}$
$\Rightarrow \sqrt{(x-3)^{2}+(y-6)^{2}}=\sqrt{(x+3)^{2}+(y-4)^{2}}$
$\Rightarrow(\mathrm{x}-3)^{2}+(\mathrm{y}-6)^{2}=(\mathrm{x}+3)^{2}+(\mathrm{y}-4)^{2}$
$\Rightarrow\left(\mathrm{x}^{2}-6 \mathrm{x}+9\right)+\left(\mathrm{y}^{2}-12 \mathrm{y}+36\right)$
$=\left(x^{2}+6 x+9\right)+\left(y^{2}-8 y+16\right)$
$\Rightarrow-6 \mathrm{x}-12 \mathrm{y}+45=6 \mathrm{x}-8 \mathrm{y}+25$
$\Rightarrow 12 \mathrm{x}+4 \mathrm{y}-20=0 \Rightarrow 3 \mathrm{x}+\mathrm{y}-5=0$

Questions and Solutions | Exercise 7.2 - NCERT Books

Q1. Find the co-ordinates of the point which divides the line joining of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$.
Sol. Let the required point be $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
Here the end points are $(-1,7)$ and $(4,-3)$
\because Ratio $=2: 3=\mathrm{m}_{1}: \mathrm{m}_{2}$
$\therefore \quad \mathrm{x}=\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{(2 \times 4)+3(-1)}{2+3}$

$$
=\frac{8-3}{5}=\frac{5}{5}=1
$$

$$
\begin{aligned}
& \text { And } y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
& \quad=\frac{2 \times(-3)+(3 \times 7)}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3
\end{aligned}
$$

Thus, the required point is $(1,3)$.
Q2. Find the coordinates of the points of trisection of the line segment joining $(4,-1)$ and $(-2,-3)$.

Sol.

Points P and Q trisect the line segment joining the points $\mathrm{A}(4,-1)$ and $\mathrm{B}(-2,-3)$, i.e., $\mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$.

Here, P divides AB in the ratio $1: 2$ and Q divides AB in the ratio $2: 1$.
x-coordinate of $\mathrm{P}=\frac{1 \times(-2)+2 \times(4)}{1+2}=\frac{6}{3}=2$;
y -coordinate of $\mathrm{P}=\frac{1 \times(-3)+2 \times(-1)}{1+2}=\frac{-5}{3}$

Thus, the coordinates of P are $\left(2, \frac{-5}{3}\right)$.
Now, x coordinate of $\mathrm{Q}=\frac{2 \times(-2)+1(4)}{2+1}=0$;
y -coordinate of $\mathrm{Q}=\frac{2 \times(-3)+1 \times(-1)}{2+1}=-\frac{7}{3}$
Thus, the coordinates of Q are $\left(0,-\frac{7}{3}\right)$.

Hence, the points of trisection are $\mathrm{P}\left(2, \frac{-5}{3}\right)$ and $\mathrm{Q}\left(0,-\frac{7}{3}\right)$.

Q3. To conduct Sports Day activities, in your rectangular shaped school ground ABCD , lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1 m from each other along AD , as shown in fig. Niharika runs $\frac{1}{4}$ th the distance AD on the 2 nd line and posts a green flag. Preet runs $\frac{1}{5}$ th the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

Sol. Let us consider ' A ' as origin, then

$A B$ is the x-axis.
AD is the y -axis.
Now, the position of green flag-post is
$\left(2, \frac{100}{4}\right)$ or $(2,25)$
And, the position of red flag-post is
$\left(8, \frac{100}{5}\right)$ or $(8,20)$
\Rightarrow Distance between both the flags
$=\sqrt{(8-2)^{2}+(20-25)^{2}}$
$=\sqrt{6^{2}+(-5)^{2}}=\sqrt{36+25}=\sqrt{61}$
Let the mid-point of the line segment joining the two flags be $\mathrm{M}(\mathrm{x}, \mathrm{y})$.

$\therefore \quad \mathrm{x}=\frac{2+8}{2}$ and $\mathrm{y}=\frac{25+20}{2}$
or $\mathrm{x}=5$ and $\mathrm{y}=22.5$
Thus, the blue flag is on the 5th line at a distance 22.5 m above AB .

Q4. Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by (1, 6).
Sol. Let the required ratio be K : 1

$$
\begin{array}{c|c}
\text { Comparing x-coordinate } & \begin{array}{c}
\text { Comparing y-coordinate } \\
\frac{\mathrm{k} \times(6)+1 \times(-3)+1 \times(10)}{\mathrm{k}+1}=-1
\end{array} \\
\Rightarrow 6 \mathrm{k}+1 \\
\Rightarrow 7 \mathrm{k}-3=-\mathrm{k}-1 & \Rightarrow-8 \mathrm{k}+10=6 \mathrm{k}+6 \\
\Rightarrow 7 \mathrm{k}=2 & \Rightarrow-8 \mathrm{~K}-6 \mathrm{~K}=6-10 \\
\Rightarrow \mathrm{k}=\frac{2}{7} & \Rightarrow \quad-14 \mathrm{~K}=-4 \\
& \Rightarrow \mathrm{k}=\frac{2}{7}
\end{array}
$$

Q5. Find the ratio in which the line segment joining
$\mathrm{A}(1,-5)$ and $\mathrm{B}(-4,5)$ is divided by the x -axis. Also find the coordinates of the point of division.
Sol. The given points are : $\mathrm{A}(1,-5)$ and $\mathrm{B}(-4,5)$. Let the required ratio $=\mathrm{k}: 1$ and the required point be $\mathrm{P}(\mathrm{x}, \mathrm{y})$
Part-I : To find the ratio
Since, the point P lies on x -axis,
\therefore Its y -coordinate is 0 .
$\mathrm{x}=\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$ and $0=\frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
$\Rightarrow \mathrm{x}=\frac{-4 \mathrm{k}+1}{\mathrm{k}+1}$ and $0=\frac{5 \mathrm{k}-5}{\mathrm{k}+1}$
$\Rightarrow \mathrm{x}(\mathrm{k}+1)=-4 \mathrm{k}+1$
and $5 \mathrm{k}-5=0 \Rightarrow \mathrm{k}=1$
$\Rightarrow \mathrm{x}(\mathrm{k}+1)=-4 \mathrm{k}+1$
$\Rightarrow \mathrm{x}(1+1)=-4+1 \quad[\because \mathrm{k}=1]$
$\Rightarrow 2 \mathrm{x}=-3$
$\Rightarrow \mathrm{x}=-\frac{3}{2}$
\therefore The required ratio $\mathrm{k}: 1=1: 1$
Coordinates of P are $(\mathrm{x}, 0)=\left(\frac{-3}{2}, 0\right)$
Q6. If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.
Sol. Mid-point of the diagonal AC has x -coordinate
$=\frac{x+1}{2}$ and y-coordinate $=\frac{6+2}{2}=4$
i.e., $\left(\frac{x+1}{2}, 4\right)$ is the mid-point of $A C$.

Similarly, mid-point of the diagonal BD is
$\left(\frac{4+3}{2}, \frac{\mathrm{y}+5}{2}\right)$, i.e., $\left(\frac{7}{2}, \frac{\mathrm{y}+5}{2}\right)$
We know that the two diagonals AC and BD bisect each other at M. Therefore,
$\left(\frac{\mathrm{x}+1}{2}, 4\right)$ and $\left(\frac{7}{2}, \frac{\mathrm{y}+5}{2}\right)$. Coincide
$\Rightarrow \frac{\mathrm{x}+1}{2}=\frac{7}{2}$ and $\frac{\mathrm{y}+5}{2}=4$
$\Rightarrow \mathrm{x}=6$ and $\mathrm{y}=3$

Q7. Find the coordinates of a point A , where AB is the diameter of a circle whose centre is $(2,-$ $3)$ and B is (1, 4).

Sol. Here, centre of the circle is $\mathrm{O}(2,-3)$
Let the end points of the diameter be $\mathrm{A}(\mathrm{x}, \mathrm{y})$ and $\mathrm{B}(1,4)$

The centre of a circle bisects the diameter.
$\therefore 2=\frac{\mathrm{x}+1}{2} \Rightarrow \mathrm{x}+1=4$ or $\mathrm{x}=3$
And $-3=\frac{y+4}{2} \Rightarrow y+4=-6$ or $y=-10$
Here, the coordinates of A are $(3,-10)$
Q8. If A and B are $(-2,-2)$ and $(2,-4)$, respectively, find the coordinates of P such that $\mathrm{AP}=$ $\frac{3}{7} \mathrm{AB}$ and P lies on the line segment AB .

Sol.

$\mathrm{AP}=\frac{3}{7} \mathrm{AB}$,
$\mathrm{BP}=\mathrm{AB}-\mathrm{AP}=\mathrm{AB}-\frac{3}{7} \mathrm{AB}=\frac{4}{7} \mathrm{AB}$
$\frac{\mathrm{AP}}{\mathrm{BP}}=\frac{\frac{3}{7} \mathrm{AB}}{\frac{4}{7} \mathrm{AB}}=\frac{3}{4}$
Thus, P divides AB in the ratio $3: 4$.
x -coordinate of $\mathrm{P}=\frac{3 \times(2)+4 \times(-2)}{3+4}=-\frac{2}{7}$
y -coordinate of $\mathrm{P}=\frac{3 \times(-4)+4 \times(-2)}{3+4}=-\frac{20}{7}$
Hence, the coordiantes of P are $\left(-\frac{2}{7},-\frac{20}{7}\right)$.
Q9. Find the coordinates of the points which divide the line segment joining $\mathrm{A}(-2,2)$ and $\mathrm{B}(2$, 8) into four equal parts.

Sol. Here, the given points are $\mathrm{A}(-2,2)$ and $\mathrm{B}(2,8)$
Let P_{1}, P_{2} and P_{3} divide $A B$ in four equal parts.

$\because \quad \mathrm{AP}_{1}=\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{P}_{2} \mathrm{P}_{3}=\mathrm{P}_{3} \mathrm{~B}$
Obviously, P_{2} is the mid-point of AB
\therefore Coordinates of P_{2} are

$$
\left(\frac{-2+2}{2}, \frac{2+8}{2}\right) \text { or }(0,5)
$$

Again, P_{1} is the mid-point of AP_{2}.
\therefore Coordinates of P_{1} are

$$
\left(\frac{-2+0}{2}, \frac{2+5}{2}\right) \text { or }\left(-1, \frac{7}{2}\right)
$$

Also P_{3} is the mid-point of $\mathrm{P}_{2} \mathrm{~B}$.
\therefore Coordinates of P_{3} are

$$
\left(\frac{0+2}{2}, \frac{5+8}{2}\right) \text { or }\left(1, \frac{13}{2}\right)
$$

Thus, the coordinates of $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} are $\left(-1, \frac{7}{2}\right),(0,5)$ and $\left(1, \frac{13}{2}\right)$ respectively.
Q10. Find the area of a rhombus if its vertices are $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order.
Sol. Diagonals AC and BD bisect each other at right angle to each other at O.

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{(-1-3)^{2}+(4-0)^{2}} \\
= & \sqrt{16+16}=\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

$\mathrm{BD}=\sqrt{(4+2)^{2}+(5+1)^{2}}=\sqrt{36+36}=6 \sqrt{2}$
Then $\mathrm{OA}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 4 \sqrt{2}=2 \sqrt{2}$

$$
\mathrm{OB}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 6 \sqrt{2}=3 \sqrt{2}
$$

Area of $\triangle \mathrm{AOB}=\frac{1}{2}(\mathrm{OA}) \times(\mathrm{OB})=\frac{1}{2} \times 2 \sqrt{2} \times 3 \sqrt{2}=6$ sq. units
Hence, the area of the rhombus ABCD
$=4 \times$ area of $\triangle \mathrm{AOB}=4 \times 6=24$ sq. units.

