# CLASS X: MATHS <br> Chapter 10: Circles 

## Questions and Solutions | Exercise 10.1 - NCERT Books

Q1. How many tangents can a circle have?
Sol. There can be infinitely many tangents to a circle.

Q2. Fill in the blanks :
(i) A tangent to a circle intersects it in.....point (s).
(ii) A line intersecting a circle in two points is called a.......
(iii) A circle can have $\qquad$ parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called. $\qquad$
Sol. (i) One
(ii) Secant
(iii) Two
(iv) Point of contact.

Q3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is.
(1) 12 cm
(2) 13 cm
(3) 8.5 cm
(4) $\sqrt{119} \mathrm{~cm}$

Sol. O is the centre of the circle. The radius of the circle is 5 cm .
PQ is tangent to the circle at P . Then

$$
\mathrm{OP}=5 \mathrm{~cm} \text { and } \angle \mathrm{OPQ}=90^{\circ} .
$$

We are given that $\mathrm{OQ}=12 \mathrm{~cm}$.


By Pythagoras Theorem, we have

$$
\begin{aligned}
\mathrm{PQ}^{2} & =\mathrm{OQ}^{2}-\mathrm{OP}^{2} \\
& =(12)^{2}-(5)^{2}=144-25=119
\end{aligned}
$$

$\Rightarrow \mathrm{PQ}=\sqrt{119} \mathrm{~cm}$
Hence, the correction option is (D).
Q4. Draw a circle and two lines parallel to a given line such that one is tangent and other a secant to the circle.
Sol. We have the required figure, as shown


Here, $\ell$ is the given line and a circle with centre $O$ is drawn.
The line n is drawn which is parallel to $\ell$ and tangent to the circle. Also, m is drawn parallel to line $\ell$ and is a secant to the circle.

## Questions and Solutions | Exercise 10.2 - NCERT Books

Q1. From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is -
(A) 7 cm
(B) 12 cm
(C) 15 cm
(D) 24.5 cm

Sol. From figure,

$$
\begin{aligned}
\mathrm{r}^{2} & =(25)^{2}-(24)^{2} \\
& =625-576 \\
& =49 \\
\Rightarrow & \mathrm{r}=7 \mathrm{~cm}
\end{aligned}
$$



Hence, the correct option is (A)

Q2. In fig., if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to -
(A) $60^{\circ}$
(B) $70^{\circ}$
(C) $80^{\circ}$
(D) $90^{\circ}$


Sol. TQ and TP are tangents to a circle with centre O and $\angle \mathrm{POQ}=110^{\circ}$
$\therefore \mathrm{OP} \perp \mathrm{PT}$ and $\mathrm{OQ} \perp \mathrm{QT}$
$\Rightarrow \angle \mathrm{OPT}=90^{\circ}$ and $\angle \mathrm{OQT}=90^{\circ}$
Now, in the quadrilateral TPOQ, we get
$\therefore \mathrm{PTQ}+90^{\circ}+110^{\circ}+90^{\circ}=360^{\circ}$
[Angle sum property of a quadrilateral]
$\Rightarrow \angle \mathrm{PTQ}+290^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=360^{\circ}-290^{\circ}=70^{\circ}$
Hence, the correct option is (B)

Q3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of $80^{\circ}$, then $\angle \mathrm{POA}$ is equal to
(A) $50^{\circ}$
(B) $60^{\circ}$
(C) $70^{\circ}$
(D) $80^{\circ}$

Sol. In figure,

$$
\begin{aligned}
& \Delta \mathrm{OAP} \cong \\
\Rightarrow \quad & \angle \mathrm{POA}=\angle \mathrm{POB}(\mathrm{SSS} \text { congruence })
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{2} \angle \mathrm{AOB} \tag{1}
\end{equation*}
$$

Also $\quad \angle \mathrm{AOB}+\angle \mathrm{APB}=180$
$\Rightarrow \angle \mathrm{AOB}+80^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=100^{\circ}$
Then from (1) and (2)
$\angle \mathrm{POA}=\frac{1}{2} \times .100=50^{\circ}$


Hence, the correction option is (A)

Q4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
Sol. In the figure, PQ is diameter of the given circle and O is its centre.
Let tangents AB and CD be drawn at the end points of the diameter PQ.
Since, the tangents at a point to a circle is perpendicular to the radius through the point.

$\therefore \mathrm{PQ} \perp \mathrm{AB}$
$\Rightarrow \mathrm{APQ}=90^{\circ}$ and $\mathrm{PQ} \perp \mathrm{CD}$
$\Rightarrow \angle \mathrm{PQD}=90^{\circ}$
$\Rightarrow \angle \mathrm{APQ}=\angle \mathrm{PQD}$
But they form a pair of alternate angles.
$\therefore \mathrm{AB} \| \mathrm{CD}$.
Hence, the two tangents are parallel.
Q5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.
Sol. In figure, line $\ell$ is tangent to the circle at P . O is the centre of the circle.
$\mathrm{OP}=$ radius of the circle.

If we have some points $Q_{1}, Q_{2}$, etc. on $\ell$, then we find that $O P$ is the shortest distance from O in comparison to the distances $\mathrm{OQ}_{1}, \mathrm{OQ}_{2}$, etc. Therefore, $\mathrm{OP} \perp \ell$. Hence, the perpendicular OP drawn to the tangent line at P passes through the centre O of the circle.


Q6. The length of a tangent from a point A at a distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.
Sol. The tangent to a circle is perpendicular to the radius through the point of contact.
$\therefore \angle \mathrm{OTA}=90^{\circ}$
Now, in the right $\triangle \mathrm{OTA}$, we have :
$\mathrm{OA}^{2}=\mathrm{OT}^{2}+\mathrm{AT}^{2} \quad[$ Pythagoras theorem]

$\Rightarrow 5^{2}=\mathrm{OT}^{2}+4^{2}$
$\Rightarrow \mathrm{OT}^{2}=5^{2}-4^{2}$
$\Rightarrow \mathrm{OT}^{2}=(5-4)(5+4)$
$\Rightarrow \mathrm{OT}^{2}=1 \times 9=9=3^{2}$
$\Rightarrow \mathrm{OT}=3$
Thus, the radius of the circle is 3 cm .

Q7. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Sol. In fig. the two concentric circles have their centre at O . The radius of the larger circle is 5 cm and that of the smaller circle is 3 cm .
AB is a chord of the larger circle and it touches the smaller circle at P .
Join OA, OB and OP.
Now, $\mathrm{OA}=\mathrm{OB}=5 \mathrm{~cm}$, $\mathrm{OP}=3 \mathrm{~cm}$
and $\mathrm{OP} \perp \mathrm{AB}$,
i.e., $\angle \mathrm{OPA}=$

$\angle \mathrm{OPB}=90^{\circ}$
$\Rightarrow \quad \Delta \mathrm{OAP} \cong \Delta \mathrm{OBP} \quad$ (RHS congruence)
$\Rightarrow \quad \mathrm{AP}=\mathrm{BP}=\frac{1}{2} \mathrm{AB}$ or $\mathrm{AB}=2 \mathrm{AP}$
By Pythagoras theorem,

$$
\begin{aligned}
& \mathrm{OA}^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2} \\
\Rightarrow & (5)^{2}=\mathrm{AP}^{2}+(3)^{2} \\
\Rightarrow & \mathrm{AP}^{2}=25-9=16 \\
\Rightarrow & \mathrm{AP}=4 \mathrm{~cm} \\
\Rightarrow \quad & \mathrm{AB}=2 \times 4 \mathrm{~cm}=8 \mathrm{~cm}
\end{aligned}
$$

Q8. A quadrilateral ABCD is drawn to circumscribe a circle (see fig.).
Prove that $A B+C D=A D+B C$.


Sol. In fig., we observe that

$$
\begin{equation*}
\mathrm{AP}=\mathrm{AS} \tag{1}
\end{equation*}
$$

$\{\because \mathrm{AP}$ and AS are tangents to the circle drawn from the point A$\}$
Similarly, $\quad B P=B Q$
$C R=C Q$
$\mathrm{DR}=\mathrm{DS}$
Adding (1), (2), (3), (4), we have
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
Q9. In fig., $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre $O$ and another tangent AB with point of contact C intersecting XY at A and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ at B . Prove that $\angle \mathrm{AOB}=90^{\circ}$


Sol. In fig., Join OC and we have $\Delta \mathrm{s}$ AOP and AOC for which

$$
\begin{array}{ll} 
& \mathrm{AP}=\mathrm{AC} \quad(\text { Both tangents from } \mathrm{A}) \\
& \mathrm{OP}=\mathrm{OC} \quad(\text { Each }=\text { radius }) \\
& \mathrm{OA}=\mathrm{OA} \quad(\text { Common side }) \\
\Rightarrow \quad & \triangle \mathrm{AOP} \cong \triangle \mathrm{AOC}(\mathrm{SSS} \text { congruence }) \\
\Rightarrow \quad \angle \mathrm{PAO}=\angle \mathrm{CAO} \\
\Rightarrow \quad \angle \mathrm{PAC}=2 \angle \mathrm{OAC} \quad \ldots(1)  \tag{1}\\
\text { Similarly, } \angle \mathrm{QBC}=2 \angle \mathrm{OBC} \ldots(2) \\
\text { Adding }(1) \text { and }(2), \\
& \angle \mathrm{PAC}+\angle \mathrm{QBC}=2\{\angle \mathrm{OAC}+\angle \mathrm{OBC}\} \\
\Rightarrow \quad 180^{\circ}=2\{\angle \mathrm{OAC}+\angle \mathrm{OBC}\} \\
& \left(\because \text { in quadrilateral } \mathrm{PABQ}, \angle \mathrm{P}=\angle \mathrm{Q}=90^{\circ}\right\}
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \angle \mathrm{OAC}+\angle \mathrm{OBC}=\frac{1}{2} \times 180^{\circ}=90^{\circ} \tag{3}
\end{equation*}
$$

Now, in $\triangle \mathrm{AOB}$ we have

$$
\begin{aligned}
& \angle \mathrm{AOB}+\angle \mathrm{OAC}+\angle \mathrm{OBC}=180^{\circ} \\
\Rightarrow & \angle \mathrm{AOB}+90^{\circ}=180^{\circ} \quad(\mathrm{By}(3)) \\
\Rightarrow & \angle \mathrm{AOB}=90^{\circ}
\end{aligned}
$$

Q10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.
Sol. Let PA and PB be two tangents drawn from an external point P to a circle with centre O .


Now, in right $\triangle \mathrm{OAP}$ and right $\triangle \mathrm{OBP}$, we have
$\mathrm{PA}=\mathrm{PB}$
[Tangents to circle from an
external point]
$\mathrm{OA}=\mathrm{OB} \quad$ [Radii of the same circle]
$\mathrm{OP}=\mathrm{OP} \quad$ [Common]
$\Delta \mathrm{OAP} \cong \triangle \mathrm{OBP}$
[By SSS congruency]
$\therefore \angle \mathrm{OPA}=\angle \mathrm{OPB} \quad$ [By C.P.C.T.]
and $\angle \mathrm{AOP}=\angle \mathrm{BOP}$
$\Rightarrow \angle \mathrm{APB}=2 \angle \mathrm{OPA}$ and $\angle \mathrm{AOB}=2 \angle \mathrm{AOP}$
But $\angle \mathrm{AOP}=90^{\circ}-\angle \mathrm{OPA}$
$\Rightarrow 2 \angle \mathrm{AOP}=180^{\circ}-2 \angle \mathrm{OPA}$
$\Rightarrow \angle \mathrm{AOB}=180^{\circ}-\angle \mathrm{APB}$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{APB}=180^{\circ}$ (Proved)

Q11. Prove that the parallelogram circumscribing a circle is a rhombus.
Sol. Let ABCD be a parallelogram such that its sides touch a circle with centre O .

$\mathrm{AP}=\mathrm{AS}$ [Tangents from an external point are equal]
$\mathrm{BP}=\mathrm{BQ}$
$C R=C Q$
$\mathrm{DR}=\mathrm{DS}$
Adding these equations
$\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{DS}+\mathrm{BQ}+\mathrm{CQ}$
$A B+C D=A D+B C$
$2 \mathrm{AB}=2 \mathrm{BC}$
$\mathrm{AB}=\mathrm{BC}$
$\Rightarrow \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
$\Rightarrow \mathrm{ABCD}$ is a rhombus.
Hence proved
Q12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see fig.). Find the sides AB and AC .


Sol. In fig. $\mathrm{BD}=8 \mathrm{~cm}$ and $\mathrm{DC}=6 \mathrm{~cm}$
Then we have $\mathrm{BE}=8 \mathrm{~cm} \quad(\because \mathrm{BE}=\mathrm{BD})$
and $\mathrm{CF}=6 \mathrm{~cm}(\because \mathrm{CF}=\mathrm{CD})$

Suppose AE $=\mathrm{AF}=\mathrm{x} \mathrm{cm}$
In $\triangle \mathrm{ABC}, \mathrm{a}=\mathrm{BC}=6 \mathrm{~cm}+8 \mathrm{~cm}=14 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{b}=\mathrm{CA}=(\mathrm{x}+6) \mathrm{cm}, \quad \mathrm{c}=\mathrm{AB}=(\mathrm{x}+8) \mathrm{cm} \\
& \mathrm{~s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{14+(\mathrm{x}+6)+(\mathrm{x}+8)}{2} \mathrm{~cm} \\
& =\frac{2 \mathrm{x}+28}{2} \mathrm{~cm}=(\mathrm{x}+14) \mathrm{cm}
\end{aligned}
$$



Area of $\triangle \mathrm{ABC}$
$=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{(x+14) \times x \times 8 \times 6}$
$=\sqrt{48 \mathrm{x} \times(\mathrm{x}+14)} \mathrm{cm}^{2}$
Also, area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{OBC}+$ area of $\triangle \mathrm{OCA}+$ area of $\Delta \mathrm{OAB}$

$$
\begin{align*}
& =\frac{1}{2} \times 4 \times a+\frac{1}{2} \times 4 \times b+\frac{1}{2} \times 4 \times c \\
& =2(a+b+c)=2 \times 2 \mathrm{~s}=4 \mathrm{~s} \\
& =4(x+14) \mathrm{cm}^{2} \tag{2}
\end{align*}
$$

From (1) and (2), $\sqrt{48 \mathrm{x} \times(\mathrm{x}+14)}=4 \times(\mathrm{x}+14)$
$\Rightarrow 48 \mathrm{x} \times(\mathrm{x}+14)=16 \times(\mathrm{x}+14)^{2}$
$\Rightarrow 3 \mathrm{x}=\mathrm{x}+14 \quad \Rightarrow \mathrm{x}=7 \mathrm{~cm}$
Then $A B=c=(x+8) \mathrm{cm}=(7+8) \mathrm{cm}=15 \mathrm{~cm}$
and $\mathrm{AC}=\mathrm{b}=(\mathrm{x}+6) \mathrm{cm}=(7+6) \mathrm{cm}=13 \mathrm{~cm}$

