



CLASS X: MATHS

Chapter 2: Polynomials

Questions and Solutions | Exercise 2.1 - NCERT Books

Q1. The graph of y = p(x) are given in fig below, for some polynomials p(x). Find the number of zeros of p(x), in each case.

- **Sol.** (i) Graph of y = p(x) does not intersect the x-axis. Hence, polynomial p(x) has no zero.
- Graph of y = p(x) intersects the x-axis at one (ii) and only one point. Hence, polynomial p(x) has one and only one real zero.

Class X Maths

- (iii) Graph of y = p(x) intersects the x-axis at 3 points. Hence, polynomial p(x) has 3 zeros.
- Graph of y = p(x) intersects the x-axis at 2 points. Hence, polynomial p(x) has 2 zeros. (iv)
- Graph of y = p(x) intersects the x-axis at 4 points. Hence, polynomial p(x) has 4 zeros. (v)
- Graph of y = p(x) intersects the x-axis at 1 points and touch x-axis at 2 points. Hence, p(x)(vi) has 3 zeros.

Questions and Solutions | Exercise 2.2 - NCERT Books

Q1. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients. (i) $x^2 - 2x - 8$ (ii) $4s^2 - 4s + 1$

X = 2X = 0	(11) + 5 = + 5 + 1
$6x^2 - 3 - 7x$	(iv) $4u^2 + 8u$
$2^{2}-15$	(vi) $3x^2 - x - 4$
-15	$(\mathbf{v}\mathbf{I})\mathbf{J}\mathbf{X}$

(i) $x^2 - 2x - 8 = x^2 - 4x + 2x - 8$ Sol. = x (x-4) + 2(x-4) = (x+2) (x-4)Zeroes are -2 and 4. Sum of the zeros $= (-2) + (4) = 2 = \frac{-(-2)}{1} = \frac{-(\text{Coefficient of } x)}{(\text{Coefficient of } x^2)}$ Product of the zeros $= (-2) (4) = -8 = \frac{(-8)}{1} = \frac{(\text{Constant term})}{(\text{Coefficient of } x^2)}$

(ii)
$$4s^2 - 4s + 1 = (2s - 1)^2$$

Class X Maths

The two zeros are $\frac{1}{2}, \frac{1}{2}$ Sum of the two zeros $=\frac{1}{2}+\frac{1}{2}=1=\frac{-(-4)}{4}=\frac{-(\text{Coefficient of }x)}{(\text{Coefficient of }x^2)}$ Product of two zeros $=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}=\frac{(\text{Constant term})}{(\text{Coefficient of }x^2)}$ $6x^2 - 7x - 3$ (iii) $= 6x^2 - 9x + 2x - 3$ = 3x(2x - 3) + 1(2x - 3)=(2x-3)(3x+1)zeros are $\frac{3}{2}, \frac{-1}{3}$ Sum of zeros = $\frac{3}{2} + \left(\frac{-1}{3}\right)$ $= \frac{9-2}{6} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{coefficient of } x)}{(\text{coefficient of } x^2)}$ Product of zeros $=\frac{3}{2}\times\left(\frac{-1}{3}\right)=\frac{-1}{2}=\frac{-(3)}{6}$ $= \frac{(\text{constant term})}{(\text{coefficient of } x^2)}$ $4u^2 + 8u = 4u(u + 2)$

(iv) zeros are 0, -2Sum of zeros

$$= 0 + (-2) = -2 = \frac{-(8)}{4}$$

Class X Maths

 $= - \frac{(\text{coefficient of } u)}{(\text{coefficient of } u^2)}$ Product of zeros

$$= 0 \times (-2) = 0 = \frac{0}{4}$$

 $= \frac{\text{constant term}}{\text{coefficient of } u^2}$

 $t^2 - 15 = (t - \sqrt{15})(t + \sqrt{15})$ (v) zeros are $\sqrt{15}$, $-\sqrt{15}$ sum of zeros

$$=\sqrt{15} + (-\sqrt{15}) = 0 = \frac{0}{1}$$

 $\frac{\text{(coefficient of t)}}{\text{(coefficient of t}^2)}$ Product of zeros

$$= (\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1}$$

 $\frac{\text{constant term}}{\text{coefficient of }t^2}$ =

(vi)
$$3x^2 - x - 4$$

= $3x^2 - 4x + 3x - 4$
= $x(3x - 4) + 1(3x - 4)$
= $(3x - 4)(x + 1)$
zeros are $\frac{4}{3}, -1$
Sum of zeros
= $\frac{4}{3} - 1 = \frac{1}{3} = -\frac{(-1)}{3}$

Class X Maths

 $\frac{\text{(coefficient of x)}}{\text{coefficient of }x^2}$

Product of zeros
$$=$$
 $\frac{4}{3} \times (-1) = -\frac{4}{3}$

 $\frac{\text{(constant term)}}{\text{coefficient of } x^2}$

- Q2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeros respectively.
 - (i) $\frac{1}{4}, -1$ (ii) $\sqrt{2}, \frac{1}{3}$ (iii) $0, \sqrt{5}$ (iv) 1, 1 $(v) - \frac{1}{4}, \frac{1}{4}$ (vi) 4, 1
- (i) Required polynomial = Sol. x^2 – (sum of zeros) x + product of zeros

$$= x^{2} - \frac{1}{4}x - 1$$
$$= \frac{1}{4} (4x^{2} - x - 1).$$

(ii) Required polynomial = x^2 – (sum of zeros) x + product of zeros

$$= x^{2} - \sqrt{2} x + \frac{1}{3}$$
$$= \frac{1}{3} (3x^{2} - 3\sqrt{2} x + 1).$$

(iii) Required polynomial = x^2 – (sum of zeros) x + product of zeros $= x^2 - 0 x + \sqrt{5}$ $= x^2 + \sqrt{5}$.

Class X Maths

- (iv) Required polynomial = x^2 – (sum of zeros) x + product of zeros $= x^2 - 1 x + 1$ $= x^2 - x + 1.$
- (v) Required polynomial = x^2 – (sum of zeros) x + product of zeros

$$= x^{2} - \left(-\frac{1}{4}\right)x + \frac{1}{4}$$
$$= x^{2} + \frac{1}{4}x + \frac{1}{4}$$
$$= \frac{1}{4}(4x^{2} + x + 1).$$

(vi) Required polynomial = x^2 - (sum of zeros) x + product of zeros = $x^2 - 4x + 1$.