CLASS IX: MATHS
 Chapter 2: Polynomials

Questions and Solutions | Exercise 2.1 - NCERT Books

Q1. Which of the following expressions are polynomials in one variable and which are not ?
State reason for your answer.
(i) $4 x^{2}-3 x+7$
(ii) $y^{2}+\sqrt{2}$
(iii) $3 \sqrt{t}+t \sqrt{2}$
(iv) $y+\frac{2}{y}$
(v) $\mathrm{x}^{10}+\mathrm{y}^{3}+\mathrm{t}^{50}$

Sol. (i) $4 x^{2}-3 x+7$
This expression is a polynomial in one variable x because there is only one variable
(x) in the expression.
(ii) $\mathrm{y}^{2}+\sqrt{2}$

This expression is a polynomial in one variable y because there is only one variable (y) in the expression.
(iii) $3 \sqrt{t}+t \sqrt{2}$

The expression is not a polynomial because in the term $3 \sqrt{\mathrm{t}}$, the exponent of t is $\frac{1}{2}$, which is not a whole number.
(iv) $y+\frac{2}{y}=y+2 y^{-1}$

The expression is not a polynomial because exponent of y is (-1) in term $\frac{2}{y}$ which in not a whole number.
(v) $\mathrm{x}^{10}+\mathrm{y}^{3}+\mathrm{t}^{50}$

The expression is not a polynomial in one variable, it is a polynomial in 3 variables x , y and t .

Q2. Write the coefficient of x^{2} in each of the following :
(i) $2+x^{2}+x$
(ii) $2-x^{2}+x^{3}$
(iii) $\frac{\pi}{2} x^{2}+x$
(iv) $\sqrt{2}-1$

Sol. (i) $2+x^{2}+x$
Coefficient of $x^{2}=1$
(ii) $2-x^{2}+x^{3}$

Coefficient of $x^{2}=-1$
(iii) $\frac{\pi}{2} x^{2}+x$

Coefficient of $x^{2}=\frac{\pi}{2}$
(iv) $\sqrt{2}-1$

Coefficient of $x^{2}=0$
Q3. Give one example each of a binomial of degree 35 and of a monomial of degree 100 .
Sol. One example of a binomial of degree 35 is $3 x^{35}-4$.
One example of monomial of degree 100 is $5 x^{100}$.
Q4. Write the degree of each of the following polynomials :
(i) $5 x^{3}+4 x^{2}+7 x$
(ii) $4-y^{2}$
(iii) $5 \mathrm{t}-\sqrt{7}$
(iv) 3

Sol. (i) $5 x^{3}+4 x^{2}+7 x$
Term with the highest power of $x=5 x^{3}$
Exponent of x in this term $=3$
\therefore Degree of this polynomial $=3$.
(ii) $4-y^{2}$

Term with the highest power of $y=-y^{2}$
Exponent of y in this term $=2$
\therefore Degree of this polynomial $=2$.
(iii) $5 \mathrm{t}-\sqrt{7}$

Term with highest power of $t=5 t$.
Exponent of t in this term $=1$
$\therefore \quad$ Degree of this polynomial $=1$.
(iv) 3

This is a constant which is non-zero
So, degree of this polynomial $=0$

Q5. Classify the following as linear, quadratic and cubic polynomials :
(i) $x^{2}+x$
(ii) $x-x^{3}$
(iii) $y+y^{2}+4$
(iv) $1+x$
(v) 3 t
(vi) r^{2}
(vii) $7 \mathrm{x}^{2}$

Sol.
(i) Quadratic
(ii) Cubic
(iii) Quadratic
(iv) Linear
(v) Linear
(vi) Quadratic
(vii) Quadratic

Questions and Solutions | Exercise 2.2 - NCERT Books

Q1. Find the value of the polynomial $5 x-4 x^{2}+3$ at
(i) $\mathrm{x}=0$
(vi) $x=-1$
(iii) $x=2$

Sol. Let $f(x)=5 x-4 x^{2}+3$
(i) Value of $f(x)$ at $x=0=f(0)$

$$
=5(0)-4(0)^{2}+3=3
$$

(ii) Value of $f(x)$ at $x=-1=f(-1)$

$$
=5(-1)-4(-1)^{2}+3=-5-4+3=-6
$$

(iii) Value of $f(x)$ at $x=2=f(2)$

$$
\begin{aligned}
& =5(2)-4(2)^{2}+3 \\
& =10-16+3=-3
\end{aligned}
$$

Q2. Find $p(0), p(1), p(2)$, for each of the following polynomials :
(i) $p(y)=y^{2}-y+1$
(ii) $p(t)=2+t+2 t^{2}-t^{3}$
(iii) $p(x)=x^{3}$
(iv) $\mathrm{p}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}+1)$

Sol. (i) $p(y)=y^{2}-y+1$
$\therefore \mathrm{p}(0)=(0)^{2}-(0)+1=1$, $\mathrm{p}(1)=(1)^{2}-(1)+1=1$, $p(2)=(2)^{2}-(2)+1=4-2+1=3$.
(ii) $\mathrm{p}(\mathrm{t})=2+\mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t}^{3}$

$$
\begin{aligned}
& \mathrm{p}(0)=2+0+2(0)^{2}-(0)^{3}=2 \\
& \mathrm{p}(1)=2+1+2(1)^{2}-(1)^{3}=2+1+2-1=4 \\
& \mathrm{p}(2)=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4
\end{aligned}
$$

(iii) $p(x)=x^{3}$

$$
\mathrm{p}(0)=(0)^{3}=0
$$

$$
\mathrm{p}(1)=(1)^{3}=1
$$

$$
\mathrm{p}(2)=(2)^{3}=8
$$

(iv) $p(x)=(x-1)(x+1)$

$$
\mathrm{p}(0)=(0-1)(0+1)=(-1)(1)=-1
$$

$$
\mathrm{p}(1)=(1-1)(1+1)=0(2)=0
$$

$$
p(2)=(2-1)(2+1)=(1)(3)=3
$$

Q3. Verify whether the following are zeroes of the polynomial, indicated against them,
(i) $p(x)=3 x+1, x=-\frac{1}{3}$
(ii) $p(x)=5 x-\pi, x=\frac{4}{5}$
(iii) $p(x)=x^{2}-1, x=1,-1$
(iv) $p(x)=(x+1)(x-2), x=-1,2$
(v) $p(x)=x^{2}, x=0$
(vi) $p(x)=\ell x+m, x=-\frac{m}{\ell}$
(vii) $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
(viii) $p(x)=2 x+1, x=\frac{1}{2}$

Sol. (i) $p(x)=3 x+1, x=-\frac{1}{3}$

$$
p\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1=-1+1=0
$$

$\therefore-\frac{1}{3}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(ii) $\mathrm{p}(\mathrm{x})=5 \mathrm{x}-\pi, \mathrm{x}=\frac{4}{5}$
$\mathrm{p}\left(\frac{4}{5}\right)=5\left(\frac{4}{5}\right)-\pi=4-\pi \neq 0$
$\therefore \frac{4}{5}$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=x^{2}-1, x=1,-1$
$\mathrm{p}(1)=(1)^{2}-1=1-1=0$
$\mathrm{p}(-1)=(-1)^{2}-1=1-1=0$
$\therefore 1,-1$ are zero's of $\mathrm{p}(\mathrm{x})$.
(iv) $\mathrm{p}(\mathrm{x})=(\mathrm{x}+1)(\mathrm{x}-2), \quad \mathrm{x}=-1,2$
$\mathrm{p}(-1)=(-1+1)(-1-2)=(0)(-3)=0$
$\mathrm{p}(2)=(2+1)(2-2)=(3)(0)=0$
$\therefore-1,2$ are zero's of $\mathrm{p}(\mathrm{x})$
(v) $p(x)=x^{2}, x=0$ $p(0)=0$
$\therefore 0$ is a zero of $\mathrm{p}(\mathrm{x})$
(vi) $\mathrm{p}(\mathrm{x})=\ell \mathrm{x}=\mathrm{m}, \mathrm{x}=\frac{-\mathrm{m}}{\ell}$
$\mathrm{p}\left(\frac{-\mathrm{m}}{\ell}\right)=\ell\left(\frac{-\mathrm{m}}{\ell}\right)+\mathrm{m}=-\mathrm{m}+\mathrm{m}=0$
$\therefore \frac{-\mathrm{m}}{\ell}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vii) $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$

$$
\begin{aligned}
& \mathrm{p}\left(-\frac{1}{\sqrt{3}}\right)=3\left(-\frac{1}{\sqrt{3}}\right)^{2}-1= 3\left(\frac{1}{3}\right)-1 \\
&=1-1=0 \\
& \mathrm{p}\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-1=3\left(\frac{4}{3}\right)-1 \\
&=4-1=3 \neq 0
\end{aligned}
$$

So, $-\frac{1}{\sqrt{3}}$ is a zero of $\mathrm{p}(\mathrm{x})$ and $\frac{2}{\sqrt{3}}$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(viii) $p(x)=2 x+1, x=\frac{1}{2}$

$$
\begin{aligned}
& \mathrm{p}\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2 \neq 0 \\
& \therefore \frac{1}{2} \text { is not a zero of } \mathrm{p}(\mathrm{x}) .
\end{aligned}
$$

Q4. Find the zero of the polynomial in each of the following cases:
(i) $p(x)=x+5$
(ii) $p(x)=x-5$
(iii) $\mathrm{p}(\mathrm{x})=2 \mathrm{x}+5$
(iv) $p(x)=3 x-2$
(v) $p(x)=3 x$
(vi) $p(x)=a x, a \neq 0$
(vii) $\mathrm{p}(\mathrm{x})=\mathrm{cx}+\mathrm{d}, \mathrm{c} \neq 0, \mathrm{c}, \mathrm{d}$ are real numbers.

Sol. (i) $\mathrm{p}(\mathrm{x})=\mathrm{x}+5$
$p(x)=0$
$\Rightarrow \mathrm{x}+5=0 \Rightarrow \mathrm{x}=-5$
$\therefore-5$ is zero of the polynomial $\mathrm{p}(\mathrm{x})$.
(ii) $\mathrm{p}(\mathrm{x})=\mathrm{x}-5$
$p(x)=0$
$x-5=0$
or $\mathrm{x}=5$
$\therefore 5$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(iii) $\mathrm{p}(\mathrm{x})=2 \mathrm{x}+5$
$p(x)=0$
$2 x+5=0$
$2 \mathrm{x}=-5$
$\Rightarrow \mathrm{x}=-\frac{5}{2}$
$\therefore-\frac{5}{2}$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(iv) $p(x)=3 x-2$
$p(x)=0 \Rightarrow 3 x-2=0$
or $\quad \mathrm{x}=\frac{2}{3}$
$\therefore \frac{2}{3}$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(v) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}$
$p(x)=0 \Rightarrow 3 x=0$
or $\mathrm{x}=0$
$\therefore 0$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(vi) $\mathrm{p}(\mathrm{x})=\mathrm{ax}, \quad \mathrm{a} \neq 0$
$\Rightarrow \mathrm{ax}=0 \quad$ or $\mathrm{x}=0$
$\therefore 0$ is zero of $\mathrm{p}(\mathrm{x})$
(vii) $p(x)=c x+d, c \neq 0, c, d$ are real numbers
$\mathrm{cx}+\mathrm{d}=0 \Rightarrow \mathrm{cx}=-\mathrm{d}$
$x=-\frac{d}{c}$
$\therefore-\frac{\mathrm{d}}{\mathrm{c}}$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.

Questions and Solutions | Exercise 2.3 - NCERT Books

Q1. Determine which of the following polynomials, $(x+1)$ is a factor of :
(i) $x^{3}+x^{2}+x+1$
(ii) $\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
(iii) $\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$
(iv) $\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{2}) \mathrm{x}+\sqrt{2}$

Sol. (i) $x^{3}+x^{2}+x+1$
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
The zero of $x+1$ is -1
$\mathrm{p}(-1)=(-1)^{3}+(-1)^{2}+(-1)+1$

$$
=-1+1-1+1=0
$$

By Factor theorem $x+1$ is a factor of $p(x)$.
(ii) $x^{4}+x^{3}+x^{2}+x+1$

Let $p(x)=x^{4}+x^{3}+x^{2}+x+1$
The zero of $x+1$ is -1
$\mathrm{p}(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1=1 \neq 0$
By Factor theorem $x+1$ is not a factor of $p(x)$
(iii) $x^{4}+3 x^{3}+3 x^{2}+x+1$

Let $p(x)=x^{4}+3 x^{3}+3 x^{2}+x+1$
Zero of $x+1$ is -1
$\mathrm{p}(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$
$=1-3+3-1+1=1 \neq 0$
By Factor theorem $x+1$ is not a factor of $p(x)$
(iv) Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{2}) \mathrm{x}+\sqrt{2}$
zero of $x+1$ is -1
$\mathrm{p}(-1)=(-1)^{3}-(-1)^{2}-(2+\sqrt{2})(-1)+\sqrt{2}$
$=-1-1+2+\sqrt{2}+\sqrt{2}=2 \sqrt{2} \neq 0$
By Factor theorem, $\mathrm{x}+1$ is not a factor of $\mathrm{p}(\mathrm{x})$.

Q2. Use the factor theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases :
(i) $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{3}+\mathrm{x}^{2}-2 \mathrm{x}-1, \mathrm{~g}(\mathrm{x})=\mathrm{x}+1$.
(ii) $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1, \mathrm{~g}(\mathrm{x})=\mathrm{x}+2$.
(iii) $p(x)=x^{3}-4 x^{2}+x+6 ; g(x)=x-3$

Sol. (i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$. $g(x)=0 \Rightarrow x+1=0 \Rightarrow x=-1$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -1
Now, $p(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1$
$=-2+1+2-1=0$
\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
(ii) Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$,
$g(x)=x+2$
$g(x)=0 \Rightarrow x+2=0$
$\Rightarrow \mathrm{x}=-2$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -2
Now, $\mathrm{p}(-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$
$=-8+12-6+1=-1$
\therefore By Factor theorem, $g(x)$ is not a factor of $p(x)$
(iii) $p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$
$\mathrm{g}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}-3=0 \Rightarrow \mathrm{x}=3$
\therefore Zero of $\mathrm{g}(\mathrm{x})=3$
Now $p(3)=3^{3}-4(3)^{2}+3+6$

$$
=27-36+3+6=0
$$

\therefore By Factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.

Q3. Find the value of k, if $x-1$ is a factor of $p(x)$ in each of the following cases :
(i) $p(x)=x^{2}+x+k$
(ii) $p(x)=2 x^{2}+k x+\sqrt{2}$
(iii) $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-\sqrt{2} \mathrm{x}+1$
(iv) $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-3 \mathrm{x}+\mathrm{k}$

Sol. (i) $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+\mathrm{k}$
If $x-1$ is a factor of $p(x)$, then $p(1)=0$
$\Rightarrow(1)^{2}+(1)+\mathrm{k}=0$
$\Rightarrow 1+1+\mathrm{k}=0$
$\Rightarrow 2+\mathrm{k}=0$
$\Rightarrow \mathrm{k}=-2$
(ii) $p(x)=2 x^{2}+k x+\sqrt{2}$

If $(x-1)$ is a factor of $p(x)$ then $p(1)=0$
$\Rightarrow 2(1)^{2}+\mathrm{k}(1)+\sqrt{2}=0$
$\Rightarrow 2+\mathrm{k}+\sqrt{2}=0$
$\mathrm{k}=-(2+\sqrt{2})$
(iii) $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-\sqrt{2} \mathrm{x}+1$

If $(x-1)$ is a factor of $p(x)$ then $p(1)=0$
$\mathrm{k}(1)^{2}-\sqrt{2}(1)+1=0$
$\Rightarrow \mathrm{k}-\sqrt{2}+1=0$
$\mathrm{k}=\sqrt{2}-1$
(iv) $p(x)=\mathrm{kx}^{2}-3 \mathrm{x}+\mathrm{k}$

If $(x-1)$ is a factor of $p(x)$ then $p(1)=0$
$\Rightarrow \mathrm{k}(1)^{2}-3(1)+\mathrm{k}=0$
$2 \mathrm{k}=3$
$\mathrm{k}=3 / 2$

Q4. Factorise :
(i) $12 x^{2}-7 x+1$
(ii) $2 \mathrm{x}^{2}+7 \mathrm{x}+3$
(iii) $6 x^{2}+5 x-6$
(iv) $3 x^{2}-x-4$

Sol. (i) $12 x^{2}-7 x+1$

$$
\begin{aligned}
& =12 x^{2}-4 x-3 x+1 \\
& =4 x(3 x-1)-1(3 x-1) \\
& =(3 x-1)(4 x-1)
\end{aligned}
$$

(ii) $2 \mathrm{x}^{2}+7 \mathrm{x}+3$
$=2 x^{2}+6 x+x+3$
$=2 \mathrm{x}(\mathrm{x}+3)+1(\mathrm{x}+3)$
$=(x+3)(2 x+1)$
(iii) $6 x^{2}+5 x-6=6 x^{2}+9 x-4 x-6$
$=3 \mathrm{x}(2 \mathrm{x}+3)-2(2 \mathrm{x}+3)$
$=(3 \mathrm{x}-2)(2 \mathrm{x}+3)$

$$
\text { (iv) } \begin{aligned}
& 3 x^{2}-x-4=3 x^{2}-4 x+3 x-4 \\
= & x(3 x-4)+1(3 x-4) \\
= & (x+1)(3 x-4)
\end{aligned}
$$

Q5. Factorise :
(i) $x^{3}-2 x^{2}-x+2$
(ii) $\mathrm{x}^{3}-3 \mathrm{x}^{2}-9 \mathrm{x}-5$
(iii) $\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20$
(iv) $2 y^{3}+y^{2}-2 y-1$

Sol. (i) $x^{3}-2 x^{2}-x+2$
Let $p(x)=x^{3}-2 x^{2}-x+2$
By trial, we find that

$$
\begin{aligned}
\mathrm{p}(1) & =(1)^{3}-2(1)^{2}-(1)+2 \\
& =1-2-1+2=0
\end{aligned}
$$

\therefore By factor Theorem, $(\mathrm{x}-1)$ is a factor of $\mathrm{p}(\mathrm{x})$.
Now, $x^{3}-2 x^{2}-x+2$
$=x^{2}(x-1)-x(x-1)-2(x-1)$
$=(x-1)\left(x^{2}-x-2\right)$
$=(\mathrm{x}-1)\left(\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-2\right)$
$=(x-1)\{x(x-2)+1(x-2)\}$
$=(x-1)(x-2)(x+1)$
(ii) $x^{3}-3 x^{2}-9 x-5$

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}-9 \mathrm{x}-5$
By trial, we find
$\mathrm{p}(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5$
$=-1-3+9-5=0$
$\therefore \quad$ By Factor Theorem, $\mathrm{x}-(-1)$ or $\mathrm{x}+1$ is factor of $\mathrm{p}(\mathrm{x})$
Now, $x^{3}-3 x^{2}-9 x-5$
$=x^{2}(x+1)-4 x(x+1)-5(x+1)$
$=(\mathrm{x}+1)\left(\mathrm{x}^{2}-4 \mathrm{x}-5\right)$
$=(x+1)\left(x^{2}-5 x+x-5\right)$
$=(\mathrm{x}+1)\{\mathrm{x}(\mathrm{x}-5)+1(\mathrm{x}-5)\}$
$=(\mathrm{x}+1)^{2}(\mathrm{x}-5)$
(iii) $x^{3}+13 x^{2}+32 x+20$

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20$

By trial, we find

$$
\begin{aligned}
& \mathrm{p}(-1)=(-1)^{3}+13(-1)^{2}+32(-1)+20 \\
& =-1+13-32+20=0
\end{aligned}
$$

\therefore By Factor theorem, $\mathrm{x}-(-1), \mathrm{x}+1$ is a factor of $\mathrm{p}(\mathrm{x})$

$$
\begin{aligned}
& \mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20 \\
& =\mathrm{x}^{2}(\mathrm{x}+1)+12(\mathrm{x})(\mathrm{x}+1)+20(\mathrm{x}+1) \\
& =(\mathrm{x}+1)\left(\mathrm{x}^{2}+12 \mathrm{x}+20\right) \\
& =(\mathrm{x}+1)\left(\mathrm{x}^{2}+2 \mathrm{x}+10 \mathrm{x}+20\right) \\
& =(\mathrm{x}+1)\{\mathrm{x}(\mathrm{x}+2)+10(\mathrm{x}+2)\} \\
& =(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+10)
\end{aligned}
$$

(iv) $2 y^{3}+y^{2}-2 y-1$
$p(y)=2 y^{3}+y^{2}-2 y-1$
By trial, we find that

$$
p(1)=2(1)^{3}+(1)^{2}-2(1)-1=0
$$

$\therefore \quad$ By Factor theorem, $(y-1)$ is a factor of $p(y)$

$$
\begin{aligned}
& 2 \mathrm{y}^{3}+\mathrm{y}^{2}-2 \mathrm{y}-1 \\
& =2 \mathrm{y}^{2}(\mathrm{y}-1)+3 \mathrm{y}(\mathrm{y}-1)+1(\mathrm{y}-1) \\
& =(\mathrm{y}-1)\left(2 \mathrm{y}^{2}+3 \mathrm{y}+1\right) \\
& =(\mathrm{y}-1)\left(2 \mathrm{y}^{2}+2 \mathrm{y}+\mathrm{y}+1\right) \\
& =(\mathrm{y}-1)\{2 \mathrm{y}(\mathrm{y}+1)+1(\mathrm{y}+1)\} \\
& =(\mathrm{y}-1)(2 \mathrm{y}+1)(\mathrm{y}+1)
\end{aligned}
$$

Questions and Solutions | Exercise 2.4 - NCERT Books

Q1. Use suitable identities to find the following products :
(i) $(x+4)(x+10)$
(ii) $(x+8)(x-10)$
(iii) $(3 x+4)(3 x-5)$
(iv) $\left(\mathrm{y}^{2}+\frac{3}{2}\right)\left(\mathrm{y}^{2}-\frac{3}{2}\right)$
(v) $(3-2 \mathrm{x})(3+2 \mathrm{x})$

Sol. (i) $(x+4)(x+10)$

$$
=\mathrm{x}^{2}+(4+10) \mathrm{x}+(4)(10)=\mathrm{x}^{2}+14 \mathrm{x}+40
$$

(ii) $(x+8)(x-10)$

$$
=(\mathrm{x}+8)\{\mathrm{x}+(-10)\}
$$

$$
\begin{aligned}
& =x^{2}+\{8+(-10)\} \mathrm{x}+8(-10) \\
& =\mathrm{x}^{2}-2 \mathrm{x}-80
\end{aligned}
$$

(iii) $(3 \mathrm{x}+4)(3 \mathrm{x}-5)$
$=(3 x+4)(3 x-5)=(3 x+4)(3 x+(-5))$
$=(3 \mathrm{x})^{2}+\{4+(-5)\}(3 \mathrm{x})+4(-5)$
$=9 \mathrm{x}^{2}-3 \mathrm{x}-20$
(iv) $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

Let, $\mathrm{y}^{2}=\mathrm{x}$
$\Rightarrow\left(\mathrm{y}^{2}+\frac{3}{2}\right)\left(\mathrm{y}^{2}-\frac{3}{2}\right)=\left(\mathrm{x}+\frac{3}{2}\right)\left(\mathrm{x}-\frac{3}{2}\right)$
$=\mathrm{x}^{2}-\frac{9}{4}$
$($ using idenity $)(a+b)(a-b)=a^{2}-b^{2}$
$\Rightarrow\left(\mathrm{y}^{2}\right)^{2}-\frac{9}{4}$
$\Rightarrow y^{4}-\frac{9}{4}$
(v) $(3-2 x)(3+2 x)$
$(3)^{2}-(2 x)^{2}=9-4 x^{2}$
(using idenity) $(a+b)(a-b)=a^{2}-b^{2}$
Q2. Evaluate the following product without multiplying directly :
(i) 103×107
(ii) 95×96
(iii) 104×96

Sol. (i) $103 \times 107=(100+3) \times(100+7)$

$$
\begin{aligned}
& =(100)^{2}+(3+7)(100)+(3)(7) \\
& =10000+1000+21=11021
\end{aligned}
$$

Alternate solution :

$$
\begin{aligned}
103 \times 107 & =(105-2) \times(105+2) \\
& =(105)^{2}-(2)^{2}=(100+5)^{2}-4 \\
& =(100)^{2}+2(100)(5)+(5)^{2}-4 \\
& =10000+1000+25-4 \\
& =11021 .
\end{aligned}
$$

(ii) 95×96

$$
\begin{aligned}
& =(90+5) \times(90+6) \\
& =(90)^{2}+(5+6) 90+(5)(6) \\
& =8100+990+30=9120
\end{aligned}
$$

(iii) 104×96

$$
=(100+4) \times(100-4)
$$

(using idenity) $(a+b)(a-b)=a^{2}-b^{2}$
$=(100)^{2}-(4)^{2}=10000-16$
$=9984$

Q3. Factorise the following using appropriate identities :
(i) $9 x^{2}+6 x y+y^{2}$
(ii) $4 y^{2}-4 y+1$
(iii) $\mathrm{x}^{2}-\frac{\mathrm{y}^{2}}{100}$

Sol. (i) $9 x^{2}+6 x y+y^{2}=(3 x)^{2}+2(3 x)(y)+(y)^{2}$

$$
\begin{aligned}
& =(3 x+y)^{2} \\
& =(3 x+y)(3 x+y)
\end{aligned}
$$

(ii) $4 y^{2}-4 y+1$
$=(2 \mathrm{y})^{2}-2(2 \mathrm{y})(1)+(1)^{2}$
$=(2 \mathrm{y}-1)^{2}=(2 \mathrm{y}-1)(2 \mathrm{y}-1)$
(iii) $\mathrm{x}^{2}-\frac{\mathrm{y}^{2}}{100}$
(using idenity) $a^{2}-b^{2}=(a+b)(a-b)$
$x^{2}-\left(\frac{y}{10}\right)^{2}=\left(x+\frac{y}{10}\right)\left(x-\frac{y}{10}\right)$

Q4. Expand each of the following using suitable identities :
(i) $(x+2 y+4 z)^{2}$
(ii) $(2 x-y+z)^{2}$
(iii) $(-2 x+3 y+2 z)^{2}$
(iv) $(3 a-7 b-c)^{2}$
(v) $(-2 x+5 y-3 z)^{2}$
(vi) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

Sol. (i) $(x+2 y+4 z)^{2}=(x)^{2}+(2 y)^{2}+(4 z)^{2}+2(x)(2 y)$

$$
2(2 y)(4 z)+2(4 z)(x)
$$

$$
=x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 z x
$$

(ii) $(2 x-y+z)^{2}$

$$
\begin{aligned}
& =(2 \mathrm{x}-\mathrm{y}+\mathrm{z})(2 \mathrm{x}-\mathrm{y}+\mathrm{z}) \\
& =(2 \mathrm{x})^{2}+(-\mathrm{y})^{2}+(\mathrm{z})^{2}+2(2 \mathrm{x})(-\mathrm{y})+2(-\mathrm{y})(\mathrm{z})+2(\mathrm{z})(2 \mathrm{x}) \\
& =4 \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-4 \mathrm{xy}-2 \mathrm{yz}+4 \mathrm{zx}
\end{aligned}
$$

(iii) $(-2 x+3 y+2 z)^{2}$

$$
\begin{aligned}
& =(-2 \mathrm{x})^{2}+(3 \mathrm{y})^{2}+(2 \mathrm{z})^{2}+2(-2 \mathrm{x})(3 \mathrm{y})+2(-2 \mathrm{x})(2 \mathrm{z})+2(3 \mathrm{y})(2 \mathrm{z}) \\
& =4 \mathrm{x}^{2}+9 \mathrm{y}^{2}+4 \mathrm{z}^{2}-12 \mathrm{xy}-8 \mathrm{xz}+12 \mathrm{yz}
\end{aligned}
$$

(iv) $(3 \mathrm{a}-7 \mathrm{~b}-\mathrm{c})^{2}=(3 \mathrm{a}-7 \mathrm{~b}-\mathrm{c})(3 \mathrm{a}-7 \mathrm{~b}-\mathrm{c})$

$$
\begin{aligned}
& =(3 \mathrm{a})^{2}+(-7 b)^{2}+(-c)^{2}+2(3 a)(-7 b)+ \\
& 2(3 a)(-c)+2(-7 b)(-c) \\
& =9 a^{2}+49 b^{2}+c^{2}-42 a b-6 a c+14 b c
\end{aligned}
$$

(v) $(-2 x+5 y-3 z)^{2}$

$$
\begin{aligned}
& =(-2 \mathrm{x}+5 \mathrm{y}-3 \mathrm{z})(-2 \mathrm{x}+5 \mathrm{y}-3 \mathrm{z}) \\
& =(-2 \mathrm{x})^{2}+(5 \mathrm{y})^{2}+(-3 \mathrm{z})^{2}+2(-2 \mathrm{x})(5 \mathrm{y})+ \\
& 2(-2 \mathrm{x})(-3 \mathrm{z})+2(-3 \mathrm{z})(5 \mathrm{y}) \\
& =4 \mathrm{x}^{2}+25 \mathrm{y}^{2}+9 \mathrm{z}^{2}-20 \mathrm{xy}+12 \mathrm{xz}-30 \mathrm{yz}
\end{aligned}
$$

(vi) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

$$
\begin{aligned}
= & \left(\frac{1}{4} \mathrm{a}-\frac{1}{2} \mathrm{~b}+1\right)\left(\frac{1}{4} \mathrm{a}-\frac{1}{2} \mathrm{~b}+1\right) \\
= & \left(\frac{1}{4} \mathrm{a}\right)^{2}+\left(-\frac{1}{2} \mathrm{~b}\right)^{2}+(1)^{2}+2\left(\frac{1}{4} \mathrm{a}\right)\left(-\frac{1}{2} \mathrm{~b}\right) \\
& +2\left(\frac{1}{4} \mathrm{a}\right)(1)^{2}+2\left(-\frac{1}{2} \mathrm{~b}\right)(1)
\end{aligned}
$$

$$
=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a
$$

Q5. Factorise :
(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 z x$

Sol. (i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

$$
\begin{aligned}
& =(2 \mathrm{x})^{2}+(3 \mathrm{y})^{2}+(-4 \mathrm{z})^{2}+2(2 \mathrm{x})(3 \mathrm{y})+2(3 \mathrm{y})(-4 \mathrm{z})+2(-4 \mathrm{z})(-2 \mathrm{x}) \\
& =\{2 \mathrm{x}+3 \mathrm{y}+(-4 \mathrm{z})\}^{2}=(2 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z})^{2} \\
& =(2 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z})(2 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z})
\end{aligned}
$$

(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 z x$

$$
\begin{aligned}
& =(-\sqrt{2} x)^{2}+y^{2}+(2 \sqrt{2} z)^{2}+2(-\sqrt{2} x) y+2 y(2 \sqrt{2} z)+2(2 \sqrt{2} z)(-\sqrt{2} x) \\
& =(-\sqrt{2} x+y+2 \sqrt{2} z)^{2}
\end{aligned}
$$

Q6. Write the following cubes in expanded form :
(i) $(2 \mathrm{x}+1)^{3}$
(ii) $(2 a-3 b)^{3}$
(iii) $\left[\frac{3}{2} x+1\right]^{3}$
(iv) $\left[x-\frac{2}{3} y\right]^{3}$

Sol. (i) $(2 \mathrm{x}+1)^{3}=(2 \mathrm{x})^{3}+(1)^{3}+3(2 \mathrm{x})(1)(2 \mathrm{x}+1)$

$$
\begin{aligned}
& =8 x^{3}+1+6 x(2 x+1) \\
& =8 x^{3}+1+12 x^{2}+6 x \\
& =8 x^{3}+12 x^{2}+6 x+1
\end{aligned}
$$

(ii) $(2 \mathrm{a}-3 \mathrm{~b})^{3}=(2 \mathrm{a})^{3}-(3 \mathrm{~b})^{3}-3(2 \mathrm{a})(3 \mathrm{~b})(2 \mathrm{a}-3 \mathrm{~b})$

$$
\begin{aligned}
& =8 a^{3}-27 b^{3}-18 a b(2 a-3 b) \\
& =8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2}
\end{aligned}
$$

(iii) $\left[\frac{3}{2} x+1\right]^{3}=\left(\frac{3}{2} x\right)^{3}+(1)^{3}+3\left(\frac{3}{2} x\right)(1)\left(\frac{3}{2} x+1\right)$

$$
\begin{aligned}
& =\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x \\
& =\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1
\end{aligned}
$$

(iv) $\left(x-\frac{2}{3} y\right)^{3}=x^{3}-\left(\frac{2}{3} y\right)^{3}-3 x\left(\frac{2}{3} y\right)\left(x-\frac{2}{3} y\right)$

$$
\begin{aligned}
& =x^{3}-\frac{8}{27} y^{3}-2 x y\left(x-\frac{2}{3} y\right) \\
& =x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2}
\end{aligned}
$$

Q7. Evaluate the following using suitable identities :
(i) $(99)^{3}$
(ii) $(102)^{3}$
(iii) $(998)^{3}$

Sol. (i) $(99)^{3}=(100-1)^{3}$

$$
\begin{aligned}
& =(100)^{3}-(1)^{3}-3(100)(1)(100-1) \\
& =1000000-1-300(100-1) \\
& =1000000-1-30000+300 \\
& =970299
\end{aligned}
$$

(ii) $(102)^{3}=(100+2)^{3}$

$$
\begin{aligned}
& =(100)^{3}+(2)^{3}+3(100)(2)(100+2) \\
& =1000000+8+600(100+2) \\
& =1000000+8+60000+1200 \\
& =1061208
\end{aligned}
$$

(iii) $(998)^{3}=(1000-2)^{3}$

$$
\begin{aligned}
& =(1000)^{3}-(2)^{3}-3(1000)(2)(1000-2) \\
& =1000000000-8-6000(1000-2) \\
& =994011992
\end{aligned}
$$

Q8. Factorise each of the following :
(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
(iii) $27-125 a^{3}-135 a+225 a^{2}$
(iv) $64 \mathrm{a}^{3}-27 \mathrm{~b}^{3}-144 \mathrm{a}^{2} \mathrm{~b}+108 \mathrm{ab}^{2}$
(v) $27 \mathrm{p}^{3}-\frac{1}{216}-\frac{9}{2} \mathrm{p}^{2}+\frac{1}{4} \mathrm{p}$

Sol. (i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

$$
\begin{aligned}
& =(2 a)^{3}+(b)^{3}+3(2 a)(b)(2 a+b) \\
& =(2 a+b)^{3}=(2 a+b)(2 a+b)(2 a+b)
\end{aligned}
$$

(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$

$$
\begin{aligned}
& =(2 a)^{3}+(-b)^{3}+3(2 a)^{2}(-b)+3(2 a)(-b)^{2} \\
& =(2 a-b)^{3}
\end{aligned}
$$

(iii) $27-125 a^{3}-135 a+225 a^{2}$

$$
\begin{aligned}
& =3^{3}-(5 a)^{3}-3(3)(5 a)(3-5 a) \\
& =(3-5 a)^{3}
\end{aligned}
$$

(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+180 a^{2}$

$$
\begin{aligned}
& =(4 a)^{3}-(3 b)^{3}-3(4 a)(3 b)(4 a-3 b) \\
& =(4 a-3 b)^{3}
\end{aligned}
$$

(v) $27 \mathrm{p}^{3}-\frac{1}{216}-\frac{9}{2} \mathrm{p}^{2}+\frac{1}{4 \mathrm{p}}$

$$
\begin{aligned}
& =(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p)\left(\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right) \\
& =\left(3 p-\frac{1}{6}\right)^{3}=\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)
\end{aligned}
$$

Q9. Verify: (i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Sol. (i) $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}=(\mathrm{x}+\mathrm{y})^{3}-3 \mathrm{xy}(\mathrm{x}+\mathrm{y})$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}=(\mathrm{x}+\mathrm{y})\left\{(\mathrm{x}+\mathrm{y})^{2}-3 \mathrm{xy}\right\}$
$\Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}+2 x y+y^{2}-3 x y\right)$
$\Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(ii) $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\Rightarrow \mathrm{x}^{3}-\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})^{3}+3 \mathrm{xy}(\mathrm{x}-\mathrm{y})$
$\Rightarrow x^{3}-y^{3}=(x-y)\left[(x-y)^{2}+3 x y\right]$
$\Rightarrow x^{3}-y^{3}=(x-y)\left[x^{2}+y^{2}-2 x y+3 x y\right]$
$\Rightarrow x^{3}-y^{3}=(x-y)\left[x^{2}+y^{2}+x y\right]$

Q10. Factorise each of the following :
(i) $27 y^{3}+125 z^{3}$
(ii) $64 m^{3}-343 n^{3}$

Sol. (i) $27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}$

$$
\begin{aligned}
& =(3 y+5 z)\left\{(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right\} \\
& =(3 y+5 z)\left(9 y^{2}-15 y z+25 z^{2}\right)
\end{aligned}
$$

(ii) $64 m^{3}-343 n^{3}$

$$
\begin{aligned}
& =(4 \mathrm{~m})^{3}-(7 \mathrm{n})^{3} \\
& =[4 \mathrm{~m}-7 \mathrm{n}]\left[16 \mathrm{~m}^{2}+4 \mathrm{~m} \cdot 7 \mathrm{n}+(7 \mathrm{n})^{2}\right] \\
& =(4 \mathrm{~m}-7 \mathrm{n})\left[16 \mathrm{~m}^{2}+28 \mathrm{mn}+49 \mathrm{n}^{2}\right]
\end{aligned}
$$

Q11. Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Sol. $27 \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-9 \mathrm{xyz}$

$$
\begin{aligned}
& =(3 \mathrm{x})^{3}+(\mathrm{y})^{3}+(\mathrm{z})^{3}-3(3 \mathrm{x})(\mathrm{y})(\mathrm{z}) \\
& =(3 \mathrm{x}+\mathrm{y}+\mathrm{z})\left((3 \mathrm{x})^{2}+(\mathrm{y})^{2}+(\mathrm{z})^{2}-(3 \mathrm{x})(\mathrm{y})-(\mathrm{y})(\mathrm{z})-(\mathrm{z})(3 \mathrm{x})\right) \\
& =(3 \mathrm{x}+\mathrm{y}+\mathrm{z})\left(9 \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-3 \mathrm{xy}-\mathrm{yz}-3 \mathrm{zx}\right)
\end{aligned}
$$

Q12. Verify that $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

Sol. $\quad(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

$$
\begin{aligned}
& (x+y+z)\left[\left(x^{2}-2 x y+y^{2}\right)+\left(y^{2}-2 y z+z^{2}\right)+\left(z^{2}-2 z x+x^{2}\right)\right. \\
= & \left.(x+y+z)+2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x\right] \\
= & (x+y+z) 2\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right] \\
= & (x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right] \\
= & x^{3}+y^{3}+z^{3}-3 x y z
\end{aligned}
$$

Q13. If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$
Sol. We know

$$
\begin{aligned}
& \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz} \\
& =(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{xy}-\mathrm{yz}-\mathrm{zx}\right) \\
& \mathrm{x}+\mathrm{y}+\mathrm{z}=0 \text { [given] } \\
& \Rightarrow(0)\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{xy}-\mathrm{yz}-\mathrm{zx}\right) \\
& =0 \\
& \text { or } \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=3 \mathrm{xyz}
\end{aligned}
$$

Q14. Without actually calculating the cubes, find the value of each of the following :
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Sol. (i) $(-12)^{3}+(7)^{3}+(5)^{3}$
$=\left\{(-12)^{3}+(7)^{3}+(5)^{3}-3(-12)(7)(5)\right\}+3(-12)(7)(5)$
$=(-12+7+5)\left\{(-12)^{2}+(7)^{2}+(5)^{2}-(-12)(7)-(7)(5)-(5)(-12)\right\}+3(-12)(7)(5)$
$=0+3(-12)(7)(5)=-1260$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$
$\because 28-15-13=0$
$(28)^{3}+(-15)^{3}+(-13)^{3}$
$=3(28)(-15)(-13)=16380$
(using identity)
if $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
$\Rightarrow a^{3}+b^{3}+c^{3}=3 a b c$

Q15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given :
(i) Area : $25 \mathrm{a}^{2}-35 \mathrm{a}+12$
(i) Area: $35 \mathrm{y}^{2}+13 \mathrm{y}-12$

Sol. (i) Area $=25 \mathrm{a}^{2}-35 \mathrm{a}+12$
$=25 a^{2}-20 a-15 a+12$
$=5 \mathrm{a}(5 \mathrm{a}-4)-3(5 \mathrm{a}-4)$
$=(5 a-3)(5 a-4)$
Here, Length $=5 \mathrm{a}-3$, Breadth $=5 \mathrm{a}-4$
(ii) $35 y^{2}+13 y-12$

$$
\begin{aligned}
& =35 y^{2}+28 y-15 y-12 \\
& =7 y(5 y+4)-3(5 y+4) \\
& =(5 y+4)(7 y-3)
\end{aligned}
$$

Here, Length $=5 y+4$, Breadth $=7 y-3$.

