CLASS IX: MATHS
 Chapter 4: Linear Equations in Two Variables

Questions and Solutions | Exercise 4.1-NCERT Books

Q1. The cost of notebook is twice the cost of a pen. Write a linear equation in two variable to represent this statement.

Sol. Let the cost of a pen be Rs. x and that of a notebook be Rs. y . We are given that $\mathrm{y}=2 \times \mathrm{x}$ i.e., $\mathrm{y}=2 \mathrm{x}$. Hence, the required linear equation is $\mathrm{y}=2 \mathrm{x}$

Q2. Express the following linear equations in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and indicate the values of a, b and c in each case :
(i) $2 x+3 y=9 . \overline{35}$
(ii) $x-y / 5-10=0$
(iii) $-2 x+3 y=6$
(iv) $x=3 y$
(v) $2 x=-5 y$
(vi) $3 x+2=0$
(vii) $y-2=0$
(viii) $5=2 x$

Sol. (i) $2 \mathrm{x}+3 \mathrm{y}-9 . \overline{35}=0$
Here, $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=-9 . \overline{35}$
(ii) $x-y / 5-10=0$
i.e., $1 \mathrm{x}+(-1 / 5) \mathrm{y}+(-10)=0$

Here, $\mathrm{a}=1, \mathrm{~b}=-1 / 5, \mathrm{c}=-10$
(iii) $-2 x+3 y=6$
i.e., $2 x-3 y+6=0$,
i.e., $2 x+(-3) y+6=0$

Here, $a=2, b=-3, c=6$
(iv) $\mathrm{x}=3 \mathrm{y}$, i.e., $1 \mathrm{x}+(-3) \mathrm{y}+0=0$

Here, $\mathrm{a}=1, \mathrm{~b}=-3, \mathrm{c}=0$
(v) $2 \mathrm{x}=-5 \mathrm{y}$, i.e., $2 \mathrm{x}+5 \mathrm{y}+0=0$

Here, $\mathrm{a}=2, \mathrm{~b}=5, \mathrm{c}=0$
(vi) $3 x+2=0$
i.e. $(3) x+(0) y+(2)=0$

Here, $\mathrm{a}=3, \mathrm{~b}=0$ and $\mathrm{c}=2$.
(vii) $y-2=0$
i.e. $(0) x+(1) y+(-2)=0$

Here, $\mathrm{a}=0, \mathrm{~b}=1$ and $\mathrm{c}=-2$.
(viii) $5=2 \mathrm{x}$
$\Rightarrow 5-2 \mathrm{x}=0$
$\Rightarrow-2 \mathrm{x}+0 \mathrm{y}+5=0$
$\Rightarrow(-2) \mathrm{x}+(0) \mathrm{y}+(5)=0$
Here, $\mathrm{a}=-2, \mathrm{~b}=0$ and $\mathrm{c}=5$.

Questions and Solutions | Exercise 4.2 - NCERT Books

Q1. Which one of the following statements is true, and why?
$y=3 x+5$ has
(i) A unique solution
(ii) Only two solutions
(iii) Infinitely many solutions.

Sol. Option (iii) is true because a linear equation has an infinitely many solutions. Moreover when represented graphically a linear equation in two variable is a straight line which has infinite points and hence, it has infinite solutions.

Q2. Write four solutions for each of the following equations :
(i) $2 x+y=7$
(ii) $\pi x+y=9$
(iii) $x=4 y$

Sol. (i) $2 x+y=7$
For $\mathrm{x}=-1$, we get $-2+\mathrm{y}=7$, i.e., $\mathrm{y}=9$
$\therefore(-1,9)$ is a solution.
For $\mathrm{x}=0$, we get $\mathrm{y}=7$
$\therefore(0,7)$ is a solution.
For $\mathrm{x}=1$, we get $2+\mathrm{y}=7$, i.e., $\mathrm{y}=5$
$\therefore(1,5)$ is a solution.
For $\mathrm{x}=2$, we get $4+\mathrm{y}=7$, i.e., $\mathrm{y}=3$
$\therefore(2,3)$ is a solution.
Hence, we have four solutions $(-1,9),(0,7),(1,5)$ and $(2,3)$
(ii) Proceed as in (i) and we can have four solutions
as $(0,9),(1,9-\pi),(2,9-2 \pi)$ and $(3,9-3 \pi)$.
(iii) Proceed as in (i) and we can have four solutions as $(0,0),(4,1),(8,2)$ and $(12,3)$

Q3. Check which of the following are solutions of the equation $x-2 y=4$ and which are not
(i) $(0,2)$
(ii) $(2,0)$
(iii) $(4,0)$
(iv) $(\sqrt{2}, 4 \sqrt{2})$
(v) $(1,1)$

Sol. (i) Substituting $x=0, y=2$ in the equation
$x-2 y=4$, we get $0-2(2)=4$, i.e., $-4=4$ but $-4 \neq 4$
$\therefore(0,2)$ is not a solution
(ii) $2-2(0) \neq 4$
$\therefore(2,0)$ is not a solution.
(iii) Substituting $x=4$ and $y=0$ in the equation
$x-2 y=4$, we get
L.H.S. $=4-2(0)=4-0=4=$ R.H.S.
\therefore L.H.S. $=$ R.H.S.
$\therefore(4,0)$ is a solution.
(iv) $\sqrt{2}-2(4 \sqrt{2})=4$, i.e., $\sqrt{2}-8 \sqrt{2}=4$,
i.e., $-7 \sqrt{2}=4$ but $-7 \sqrt{2} \neq 4$
$\therefore(\sqrt{2}, 4 \sqrt{2})$ is not a solution
(v) $1-2(1) \neq 4$
$\therefore(1,1)$ is not a solution.
Q4. Find the value of k if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.
Sol. (2) $(2)+(3)(1)=k$, i.e., $4+3=k$, i.e., $k=7$.

