CLASS IX: MATHS Chapter 8: Quadrilaterals

Questions and Solutions | Exercise 8.1 - NCERT Books

- Q1. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
- Sol. Given : ABCD is a parallelogram with diagonal AC = diagonal BD



To prove : ABCD is a rectangle.

Proof : In triangle ABC and ABD,

	AB = AB	[Common]
	AC = BD	[Given]
	AD = BC	[Opp. Sides of a gm]
	$\triangle ABC \cong BAD$	[By SSS congruency]
\Rightarrow	$\angle DAB = \angle CBA$	[By C.P.C.T.](i)

[\therefore AD||BC and AB cuts them, the sum of the interior angle of the same side of transversal is 180°]

 $\angle DAB + \angle CBA = 180^{\circ}$

.....(ii)

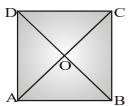
From eq. (i) and (ii), $\angle DAB = \angle CBA = 90^{\circ}$

Hence, ABCD is a rectangle

Q2. Show that the diagonals of a square are equal and bisect each other at right angles.

Sol. Given: ABCD is a square.

To Prove : (i) AC = BD (ii) AC and BD bisect each other at right angles.



Proof: In $\triangle ABC$ and $\triangle BAD$,

AB = BA[Common]BC = AD[Opp. sides of square ABCD] $\angle ABC = \angle BAD$ [Each = 90° (\because ABCD is a square] \therefore $\triangle ABC \cong \triangle BAD$ [SAS Rule] \therefore $AC = BD \dots$ (i)[C.P.C.T.]In $\triangle AOD$ and $\triangle BOC$

AD = CB [Opp. sides of square ABCD]

 $\angle OAD = \angle OCB$

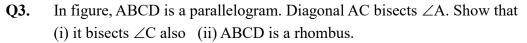
[Alternate angles as AD||BC and transversal AC intersects them]

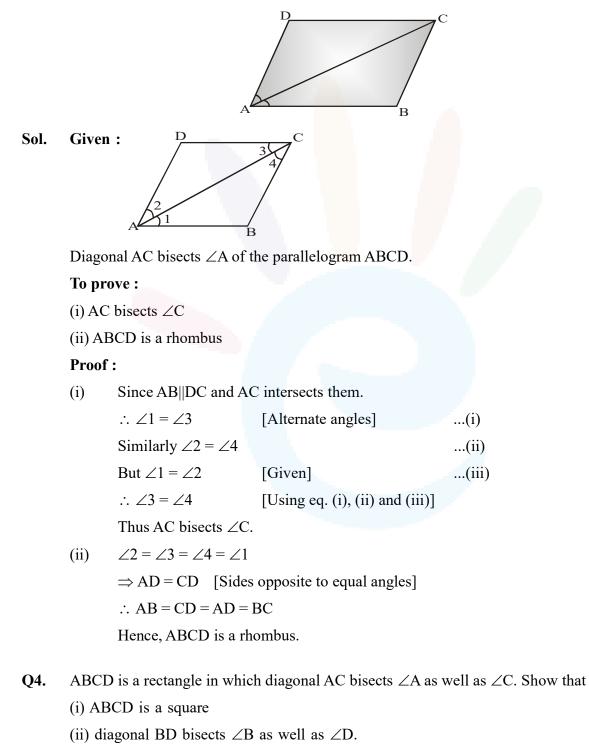
 $\angle ODA = \angle OBC$

[Alternate angles as AD||BC and transversal BD intersects them]

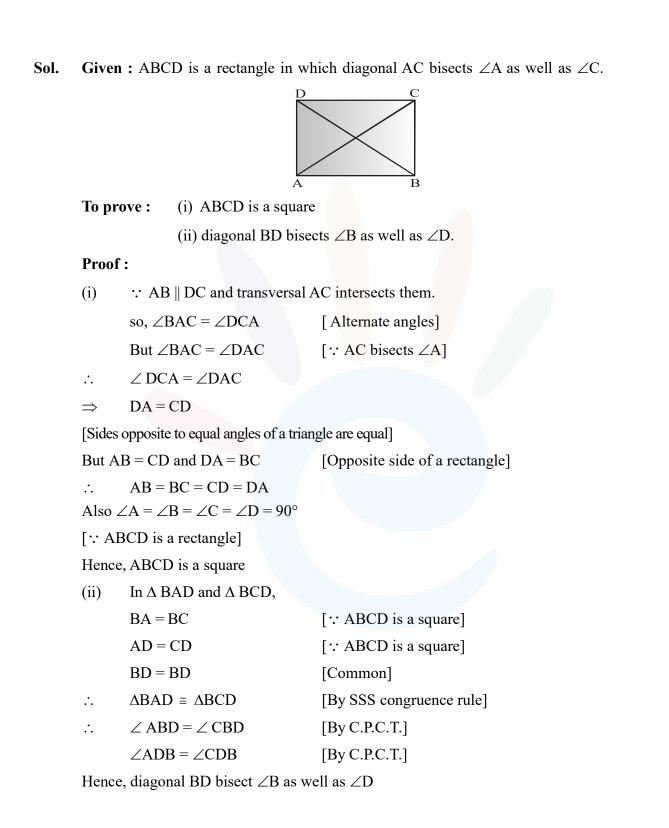
 $\triangle AOD \cong \triangle BOC$ [ASA Rule] OA = OC and OB = OD...(ii) [C.P.C.T.] *.*.. So, O is the mid point of AC and BD. Now, In $\triangle AOB$ and $\triangle COB$ AB = BC[Given] OA = OC[from (ii)] OB = OB[Common] *.*.. $\triangle AOB \cong \triangle COB$ [By SSS Rule] $\angle AOB = \angle BOC$ [C.P.C.T]*.*.. But $\angle AOB + \angle BOC = 180^{\circ}$ [Linear pair] $\angle AOB + \angle AOB = 180^{\circ}$ [AOB = BOC proved earlier] $2\angle AOB = 180^{\circ}$ \Rightarrow $\angle AOB = \frac{180^{\circ}}{2} = 90^{\circ}$ \Rightarrow $\angle AOB = \angle BOC = 90^{\circ}$ AC and BD bisect each other at right angles. ...

Å





Å



∛Saral

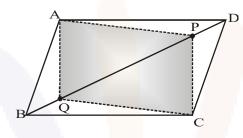
Ą

Q5. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ. Show that :

(i) $\triangle APD \cong \triangle CQB$ (ii) AP = CQ

(iii) $\triangle AQB \cong \triangle CPD$ (iv) AQ = CP

(v) APCQ is a parallelogram

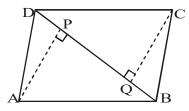


Sol. In \triangle APD and \triangle CQB, we have (i) DP = BQ[Given] AD = CB[Opposite sides of parallelogram ABCD] $\angle ADP = \angle CBQ$ [Pair of alternate angles] $\triangle APD \cong \triangle CQB$ [SAS congruence criteria] \Rightarrow (ii) Then, by CPCT, we have AP = CQ(iii) We can prove [as we have done in (i)] $\Delta AQB \cong \Delta CPD$ By CPCT, we have AQ = CP(iv) (v) Now, we have AP = CQ and AQ = CPHence, APCQ is a parallelogram.

Q6. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that

(i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ

Å



Sol. Given : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD respectively.

To prove : (i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ

Proof :

(i) In \triangle APB and \triangle CQD,

	AB = CD	[O <mark>pp. si</mark> de of g <mark>m_A</mark> BCD]
	$\angle ABP = \angle CDQ$	[AB DC and transversal BD intersect them]
	$\angle APB = \angle CQD$	$[Each = 90^{\circ}]$
	$\therefore \Delta APB \cong \Delta CQD$	[AAS Rule]
(ii)	$\therefore AP = CQ$	[C.P.C.T.]

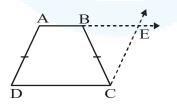
Q7. ABCD is a trapezium in which $AB \| CD$ and AD = BC. Show that (fig)

(i) $\angle A = \angle B$

(ii) $\angle C = \angle D$

(iii) $\triangle ABC \cong \triangle BAD$

(iv) diagonal AC = diagonal BD

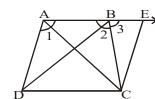


Sol. Given : ABCD is a trapezium.

AB \parallel CD and AD = BC

To Prove :

- (i) $\angle A = \angle B$
- (ii) $\angle C = \angle D$



(iii) ∆	(iii) $\triangle ABC \cong \triangle BAD$					
(iv) D	(iv) Diagonal AC = Diagonal BD					
Cons	truction : Draw CE .	AD and extend AB to intersect CE at E.				
Proof	f :					
(i)	As AECD is a parallelogram.					
	[By construction]					
.:.	AD = EC					
	But $AD = BC$	[Given]				
.:.	BC = EC					
\Rightarrow	$\angle 3 = \angle 4$	[Angles opposite to equal sides are equal]				
	Now, $\angle 1 + \angle 4 = 18$	0° [Interior angles]				
	and $\angle 2 + \angle 3 = 1$	80° [Li <mark>near</mark> pair]				
\Rightarrow	$\angle 1 + \angle 4 = \angle 2 + \angle 3$					
\Rightarrow	$\angle 1 = \angle 2$	$[\because \angle 3 = \angle 4]$				
\Rightarrow	$\angle A = \angle B$					
(ii)	$\angle 3 = \angle BCD$	[Alternate interior angles]				
	$\angle D = \angle 4$	[Opposite angles of a parallelogram]				
	But $\angle 3 = \angle 4$	$[\Delta BCE \text{ is an isosceles triangle}]$				
	$\angle BCD = \angle ADC$					
	$\angle C = \angle D$					
(iii)	In $\triangle ABC$ and $\triangle BAD$,					
	AB = AB	[Common]				
	$\angle 1 = \angle 2$	[Proved]				
	AD = BC	[Given]				
	$\Delta ABC\cong \Delta BAD$	[By SAS congruency]				
\Rightarrow	AC = BD	[By C.P.C.T.]				

Å

Questions and Solutions | Exercise 8.2 - NCERT Books

Q1. ABCD is a quadrilateral in which P, Q, R and S are mid points of the sides AB, BC, CD and DA (fig.) AC is a diagonal. Show that

(i) SR \parallel AC and SR = 1/2 C

(ii) PQ = SR

(iii) PQRS is a parallelogram.

Sol. Given : ABCD is a quadrilateral in which P, Q, R and S are mid-points of AB, BC, CD and DA. AC is a diagonal.

To prove : (i) SR || AC and SR = $\frac{1}{2}$ AC (ii) PQ = SR (iii) PQRS is a parallelogram.

Proof : (i) In ΔDAC ,

- S is the mid-point of DA and R is the mid-point of DC
- \therefore SR || AC and SR = $\frac{1}{2}$ AC [By Mid-point theorem]
- (ii) In $\triangle BAC$,
- : P is the mid-point of AB and Q is the mid-point of BC
- $\therefore \qquad PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC$ [By Mid-point theorem]

But from (i) $SR = \frac{1}{2} AC \& (ii) PQ = \frac{1}{2} AC$ $\Rightarrow PQ = SR$

(iii)	PQ AC	[From (ii)]
	SR AC	[From (i)]
	PQ SR	

[Two lines parallel to the same line are parallel to each other]

Also, PQ = SR [From (ii)]

 \therefore PQRS is a parallelogram.

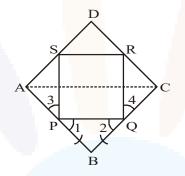
[A quadrilateral is a parallelogram if a pair of opposite sides is parallel and is of equal length]

Å

- **Q2.** ABCD is a rhombus and P, Q, R and S are the mid points of sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
- **Sol.** Given : P, Q, R and S are the mid-points of respective sides AB, BC, CD and DA of rhombus. PQ, QR, RS and SP are joined.

To prove : PQRS is a rectangle.

Construction : Join A and C.



[Given]

Proof : In $\triangle ABC$, P is the mid-point of AB and Q is the mid-point of BC.

 $\therefore \qquad PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \qquad \dots (i)$

In \triangle ADC, R is the mid-point of CD and S is the mid-point of AD.

$$\therefore \qquad \text{SR} \parallel \text{AC and SR} = \frac{1}{2} \text{AC} \qquad \qquad \dots (\text{ii})$$

From eq. (i) and (ii), $PQ \parallel SR$ and PQ = SR

 \therefore PQRS is a parallelogram.

Now ABCD is a rhombus

$$\therefore$$
 AB = BC

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC \Rightarrow PB = BQ$$

 \therefore $\angle 1 = \angle 2$ [Angles opposite to equal sides are equal] Now in triangles APS and CQR, we have,

AP = CQ [P and Q are the mid-points of

AB and BC and AB = BC]

Similarly, AS = CR and PS = QR

[Opposite sides of a parallelogram]

 $\therefore \quad \Delta APS \cong \Delta CQR \qquad [By SSS congruency]$

∛Saral

 $\angle 3 = \angle 4$ [By C.P.C.T.] \Rightarrow Now, we have $\angle 1 + \angle SPQ + \angle 3 = 180^{\circ}$ $\angle 2 + \angle PQR + \angle 4 = 180^{\circ}$ and $\angle 1 + \angle SPQ + \angle 3 = \angle 2 + \angle PQR + \angle 4$ ·. Since $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ [Proved above] \angle SPQ = \angle PQR(iii) Now PQRS is a parallelogram [Proved above] \angle SPQ + \angle PQR = 180° *.*..(iv) [Interior angles] Using eq. (iii) and (iv),

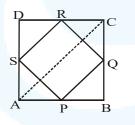
 \angle SPQ + \angle SPQ = 180°

$$\Rightarrow \qquad 2\angle SPQ = 180^{\circ} \Rightarrow \angle SPQ = 90^{\circ}$$

Hence, PQRS is a rectangle.

- Q3. ABCD is a rectangle and P,Q,R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- Given : A rectangle ABCD in which P, Q, R and S are the mid-points of the sides AB, Sol. BC, CD and DA respectively. PQ, QR, RS and SP are joinned.

To prove : PQRS is a rhombus.



Construction : Join AC.

Proof : In \triangle ABC, P and Q are the mid-points of sides AB, BC respectively.

PQ || AC and PQ = $\frac{1}{2}$ AC(i) *.*..

In \triangle ADC, R and S are the mid-points of sides CD, AD respectively.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC ...(ii)

From eq.(i) and (ii), PQ || SR and PQ=SR ...(iii)

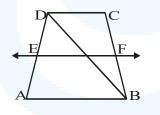
Å

PQRS is a parallelogram. *.*.. Now ABCD is a rectangle. [Given] AD = BC*.*.. $\frac{1}{2}$ AD = $\frac{1}{2}$ BC \Rightarrow AS = BQ ...(iv) \Rightarrow In triangles APS and BPQ, AP = BP[P is the mid-point of AB] [Each 90°] $\angle PAS = \angle PBQ$ AS = BQ[From eq. (iv)] and $\Delta APS \cong \Delta BPQ$ *.*.. [By SAS congruency] [By C.P.C.T.] PS = PQ.....(v) \Rightarrow From eq.(iii) and (v), we get that PQRS is a parallelogram.

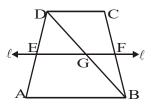
- \Rightarrow PS = PQ
- \Rightarrow Two adjacent sides are equal.

Hence, PQRS is a rhombus.

Q4. ABCD is a trapezium in which AB||DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (fig.). Show that F is the mid-point of BC.

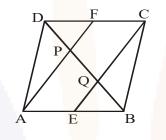


Sol. Line $\ell \parallel AB$ and passes through E.

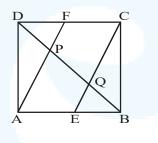


Line ℓ meets BC in F and BD in G.

- In $\triangle ABD$, E is mid-point of AD and EG || AB. \Rightarrow G is mid-point of BD. Also, $\ell \parallel AB$ and $AB \parallel CD \Rightarrow \ell \parallel CD$ \Rightarrow F is mid-point of BC. [\because G is mid-point of BD]
- **Q5.** In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (fig.). Show that the line segments AF and EC trisect the diagonal BD.



Sol. Since E and F are the mid-points of AB and CD respectively.Given : ABCD is a parallelogram. E and F are midpoints of AB and AC respectively.



To prove : DP = PQ = QB

Proof : -

*****Saral

$$\therefore$$
 AE = $\frac{1}{2}$ AB and CF = $\frac{1}{2}$ CD(i)

But ABCD is a parallelogram.

$$\therefore$$
 AB = CD and AB || DC

$$\Rightarrow \qquad \frac{1}{2} \operatorname{AB} = \frac{1}{2} \operatorname{CD} \text{ and } \operatorname{AB} \parallel \operatorname{DC}$$

- $\Rightarrow AE = FC \text{ and } AE \parallel FC \qquad [From eq. (i)]$
- \therefore AECF is a parallelogram.

<mark>∛</mark>Saral

 $\Rightarrow \quad FA \parallel CE \qquad \Rightarrow FP \parallel CQ$

[FP is a part of FA and CQ is a part of CE] (ii)

Since the line segment drawn through the mid-point of one side of a triangle and parallel to the other side bisects the third side.

In ΔDCQ , F is the mid-point of CD and

\Rightarrow	FP CQ		
	P is the is mid-point of DQ.		
\Rightarrow	DP = PQ	(iii)	
Similarly, In $\triangle ABP$, E is the mid-point of AB and			
\Rightarrow	EQ AP		
	Q is the mid-point of BP.		
\Rightarrow	BQ = PQ	(iv)	
From eq.(iii) and (iv),			
	DP = PQ = BQ	(v)	

Now, BD = BQ + PQ + DP = BQ + BQ + BQ = 3BQ

$$\Rightarrow BQ = \frac{1}{3} BD \qquad \dots (vi)$$

From eq (v) and (vi), $DP = PQ = BQ = \frac{1}{3}BD$

 \Rightarrow Points P and Q trisects BD. So AF and CE trisects BD.

Q6. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

(i) D is the mid-point of AC

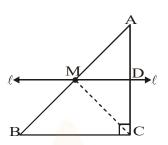
(ii) MD \perp AC

(iii) CM = MA = 1/2 AB

- Sol. (i) Through M, we draw line $\ell \parallel BC$. ℓ intersects AC at D.
 - \Rightarrow D is mid-point of AC.

∛Saral

Å



- (ii) $\angle ADM = \angle ACB = 90^{\circ}$ [Corresponding angles]
- $\Rightarrow \angle ADM = 90^{\circ} \Rightarrow MD \perp AC.$

(iii) In \triangle CMD and \triangle AMD; CD = AD, MD = MD and \angle CDM = \angle ADM [Each = 90°] Therefore, \triangle CMD $\cong \triangle$ AMD

 \Rightarrow CM = AM; Also AM = 1/2 AB.