CLASS IX: MATHS
 Chapter 9: Circles

Questions and Solutions | Exercise 9.1-NCERT Books

Q1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

Sol. Given : Two congruent circles $\mathrm{C}(\mathrm{O}, \mathrm{r})$ and $\mathrm{C}\left(\mathrm{O}^{\prime}, \mathrm{r}\right)$ which have chords AB and CD respectively such that $A B=C D$.

To prove : $\angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D}$
Proof : From $\triangle A O B$ and $\triangle C^{\prime} D$, we have

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{CD} \\
& \mathrm{OA}=\mathrm{O}^{\prime} \mathrm{C} \\
& \text { [Given] } \\
& \mathrm{OB}=\mathrm{O}^{\prime} \mathrm{D} \\
& \text { [Each equal to } \mathrm{r} \text {] } \\
& \therefore \quad \mathrm{AOB} \cong \triangle \mathrm{CO}^{\prime} \mathrm{D} \\
& \text { [By SSS-congruence] } \\
& \Rightarrow \angle \mathrm{AOB}=\angle \mathrm{CO} \text { 'D [C.P.C.T.] }
\end{aligned}
$$

Q2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Sol. Given : Two congruent circle $\mathrm{C}(\mathrm{O}, \mathrm{r})$ and $\mathrm{C}\left(\mathrm{O}^{\prime}, \mathrm{r}\right)$ which have chords AB and CD respectively, such that $\angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D}$

To prove : $\mathrm{AB}=\mathrm{CD}$
Proof: In $\Delta \mathrm{AOB}$ and Δ CO'D, we have :
$\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{C}$
$\mathrm{OB}=\mathrm{O}^{\prime} \mathrm{D}$
$\angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D}$
$\therefore \quad \triangle \mathrm{AOB} \cong \triangle \mathrm{CO}^{\prime} \mathrm{D}$
Hence, $\mathrm{AB}=\mathrm{CD}$
[each equal to r]
[each equal to r]
[given]
[by SAS - criterion]
[C.P.C.T.]

Questions and Solutions | Exercise 9.2 - NCERT Books

Q1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of common chord.

Sol. We know that if two circles intersect each other at two points, then the line joining their centres is the perpendicular bisector of their common chord.

\therefore Length of the common chord
$\Rightarrow \mathrm{PQ}=2 \mathrm{O}^{\prime} \mathrm{P}=2 \times 3=6 \mathrm{~cm}$

Q2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Sol. O is the centre of the circle. Chords AB and CD of the circle are equal. P is the point of intersection of AB and CD . Join OP , draw $\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{OD}$.
Here, we find $\mathrm{OL}=\mathrm{OM}$

$$
\begin{equation*}
(\because \mathrm{AB}=\mathrm{CD}) \tag{1}
\end{equation*}
$$ In $\triangle \mathrm{OLP}$ and $\Delta \mathrm{OMP}$,

$\mathrm{OL}=\mathrm{OM}$
$\mathrm{OP}=\mathrm{OP}$
$\angle \mathrm{OLP}=\angle \mathrm{OMP}$
Then we have $\Delta \mathrm{OLP} \cong \triangle \mathrm{OMP}$
By CPCT, or $\mathrm{PL}=\mathrm{PM}$
Now, $\quad \mathrm{AL}=\mathrm{BL}=1 / 2 \quad \mathrm{AB} ; \quad \mathrm{CM}=\mathrm{DM}=1 / 2 \quad \mathrm{CD}$
$\Rightarrow A L=C M(\because A B=C D)$
and $\mathrm{BL}=\mathrm{DM}$
Subtracting (1) from (3),
$\mathrm{AL}-\mathrm{PL}=\mathrm{CM}-\mathrm{PM} \Rightarrow \mathrm{AP}=\mathrm{CP}$
Adding (2) from (4),
$\mathrm{PL}+\mathrm{BL}=\mathrm{PM}+\mathrm{DM} \Rightarrow \mathrm{PB}=\mathrm{PD}$
Q3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Sol. O is the centre of the circle. Chords AB and CD of the circle are equal. P is the point of intersection of AB and CD . Join OP , draw $\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{OD}$.

Here, we find $\mathrm{OL}=\mathrm{OM}$
$(\because \mathrm{AB}=\mathrm{CD})$
In $\triangle \mathrm{OLP}$ and $\triangle \mathrm{OMP}$,

$$
\begin{array}{ll}
\mathrm{OL}=\mathrm{OM} & (\text { By 1) } \\
\mathrm{OP}=\mathrm{OP} & (\text { Common hypotenuse }) \\
\angle \mathrm{OLP}=\angle \mathrm{OMP} & \left(\text { Each }=90^{\circ}\right)
\end{array}
$$

Then we have $\Delta \mathrm{OLP} \cong \triangle \mathrm{OMP}$ (RHS congruence)
By CPCT, or $\mathrm{PL}=\mathrm{PM}$
Now, $\mathrm{AL}=\mathrm{BL}=1 / 2 \mathrm{AB}$;
$C M=D M=1 / 2 \quad C D$
$\Rightarrow A L=C M(\because A B=C D)$
and $\mathrm{BL}=\mathrm{DM}$
Subtracting (1) from (3),

$$
\begin{aligned}
& \mathrm{AL}-\mathrm{PL}=\mathrm{CM}-\mathrm{PM} \\
\Rightarrow \quad & \mathrm{AP}=\mathrm{CP}
\end{aligned}
$$

Adding (2) from (4),
$\mathrm{PL}+\mathrm{BL}=\mathrm{PM}+\mathrm{DM} \Rightarrow \mathrm{PB}=\mathrm{PD}$

Q4. If a line intersects two concentric circles (circles with the same centre) with centre O at A , B, C and D, prove that $A B=C D$ (see fig).

Sol. Given : Two circles with the common centre O. A line " ℓ " intersects the outer circle at A and D and the inner circle at B and C .

To prove : $\mathrm{AB}=\mathrm{CD}$
Construction : Draw $\mathrm{OM} \perp \ell$.
Proof : $\mathrm{OM} \perp \ell \quad$ [Construction]
For the outer circle,
$\therefore \quad \mathrm{AM}=\mathrm{MD} \quad$ [Perpendicular from the centre bisects the chord]
For the inner circle,
$\mathrm{OM} \perp \ell \quad$ [Construction]
$\therefore \mathrm{BM}=\mathrm{MC} \quad$ [Perpendicular from the centre to the chord bisects the chord]
Subtracting (2) from (1), we have
$\Rightarrow \mathrm{AM}-\mathrm{BM}=\mathrm{MD}-\mathrm{MC}$
$\Rightarrow \mathrm{AB}=\mathrm{CD}$

Q5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Sol. We draw $\mathrm{SN} \perp \mathrm{RS}$.
Now, SN bisects RM and also SN (produced) passes through the centre O.

Put RN $=x$
The $\operatorname{ar}(\triangle \mathrm{ORS})=\frac{1}{2} \times \mathrm{OS} \times \mathrm{RN}$

$$
=\frac{1}{2} \times 5 \times \mathrm{x}(\because \mathrm{OS}=\mathrm{OR}=5 \mathrm{~m})
$$

i.e., $\operatorname{ar}(\Delta \mathrm{ORS})=\frac{5}{2} \mathrm{x}$

Now, draw OP \perp RS, P is mid-point of RS.
$\Rightarrow \mathrm{PR}=\mathrm{PS}=3 \mathrm{~m} \Rightarrow \mathrm{OP}^{2}=(5)^{2}-(3)^{2}=16 \Rightarrow \mathrm{OP}=4 \mathrm{~m}$
Here, $\operatorname{ar}(\triangle \mathrm{ORS})=\frac{1}{2} \times \mathrm{RS} \times \mathrm{OP}=\frac{1}{2} \times 6 \times 4$
i.e., $\operatorname{ar}(\triangle \mathrm{ORS})=12 \mathrm{~m}^{2}$

From (1) and (2),
$\frac{5}{2} \mathrm{x}=12 \Rightarrow \mathrm{x}=4.8 \mathrm{~m} \Rightarrow \mathrm{RM}=2 \mathrm{x}=2 \times 4.8 \mathrm{~m} \Rightarrow \mathrm{RM}=9.6 \mathrm{~m}$
Thus, distance between Reshma and Mandip is 9.6 m .

Q6. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Sol. Let Ankur, Syed and David are sitting at A, S and D respectively such that $\mathrm{AS}=\mathrm{SD}=\mathrm{AD}$ i.e., $\triangle \mathrm{ASD}$ is an equilateral triangle.

Let the length of each side of the equilateral triangle is 2 x metres.

Draw $\mathrm{AM} \perp \mathrm{SD}$.
Since, $\triangle \mathrm{ASD}$ is an equilateral triangle,
$\therefore \quad$ AM passes through O .
$\Rightarrow \mathrm{SM}=\frac{1}{2} \mathrm{SD}=\frac{1}{2}(2 \mathrm{x})=\mathrm{x}$
Now, in $\triangle \mathrm{ASM}$, we have $\mathrm{AM}^{2}+\mathrm{SM}^{2}=\mathrm{AS}^{2}$
$\Rightarrow \mathrm{AM}^{2}=\mathrm{AS}^{2}-\mathrm{SM}^{2}=(2 \mathrm{x})^{2}-\mathrm{x}^{2}=4 \mathrm{x}^{2}-\mathrm{x}^{2}=3 \mathrm{x}^{2}$
$\Rightarrow A M=\sqrt{3} x$.
Now, $O M=A M-O A=(\sqrt{3} x-20) m$
$\Rightarrow(\mathrm{OS}=\mathrm{OA}=20 \mathrm{~cm})$
$\Rightarrow(20)^{2}=x^{2}+(\sqrt{3} x-20)^{2}$
$\Rightarrow 400=\mathrm{x}^{2}+3 \mathrm{x}^{2}-40 \sqrt{3} \mathrm{x}+400$
$\Rightarrow 4 x^{2}=40 \sqrt{3} x \Rightarrow 4 x=40 \sqrt{3} \Rightarrow x=10 \sqrt{3} m$
Now, $\mathrm{SD}=2 \mathrm{x}=2 \times 10 \sqrt{3} \mathrm{~m}=20 \sqrt{3} \mathrm{~m}$
Thus, the length of the string of each phone $=20 \sqrt{3} \mathrm{~m}$

Questions and Solutions | Exercise 9.3-NCERT Books

Q1. In Fig. A, B and C are three points on a circle with centre O such that $\angle \mathrm{BOC}=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is a point on the circle other than the arc $\angle \mathrm{ABC}$, find $\angle \mathrm{ADC}$.

Sol. $\angle \mathrm{ADC}=\frac{1}{2} \angle \mathrm{AOC}=\frac{1}{2}\left(60^{\circ}+30^{\circ}\right)=45^{\circ}$

Q2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Sol. $\because \mathrm{OA}=\mathrm{OB}=\mathrm{AB}$ [Given]
$\therefore \quad \triangle \mathrm{OAB}$ is equilateral
$\therefore \quad \angle \mathrm{AOB}=60^{\circ} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}$
[The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]

$$
=\frac{1}{2} \times 60=30^{\circ}
$$

$\because \quad \mathrm{ADBC}$ is a cyclic quadrilateral.
$\therefore \quad \angle \mathrm{ADB}+\angle \mathrm{ACB}=180^{\circ}$
[The sum of either pair of opposite angles of a cyclic quadrilateral is 180°]
$\Rightarrow \angle \mathrm{ADB}+30^{\circ}=180^{\circ} \Rightarrow \angle \mathrm{ADB}=180^{\circ}-30^{\circ}$
$\Rightarrow \angle \mathrm{ADB}=50^{\circ}$

Q3. In figure, $\angle \mathrm{PQR}=100^{\circ}$, where P, Q and R are points on a circle with centre O . Find $\angle \mathrm{OPR}$.

Sol. Take a point S in the major arc. Join PS and RS.

$\because \quad \mathrm{PQRS}$ is a cyclic quadrilateral.
$\therefore \quad \angle \mathrm{PQR}+\angle \mathrm{PSR}=180^{\circ}$
[The sum of either pair of opposite angles of a cyclic quadrilateral is 180°]
$\Rightarrow 100^{\circ}+\angle \mathrm{PSR}=180^{\circ} \Rightarrow \angle \mathrm{PSR}=180^{\circ}-100^{\circ}$
$\Rightarrow \angle \mathrm{PSR}=80^{\circ}$
Now \angle PSR $=2 \angle$ PSR
[The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]

$$
\begin{equation*}
=2 \times 80^{\circ}=160^{\circ} \ldots(2) \quad[\operatorname{Using}(\mathrm{i})] \tag{2}
\end{equation*}
$$

In $\triangle \mathrm{OPR}$,
$\because \quad \mathrm{OP}=\mathrm{OR} \quad$ [radii of a circle]
$\therefore \quad \angle \mathrm{OPR}=\angle \mathrm{ORP} \ldots$ (3) \quad [Angles opposite to equal sides of a triangle is 180°]
In $\triangle \mathrm{OPR}$,
$\angle \mathrm{OPR}+\angle \mathrm{ORP}+\angle \mathrm{POR}=180^{\circ} \quad$ [Sum of all the angles of a triangle is 180°]
$\Rightarrow \angle \mathrm{OPR}+\angle \mathrm{OPR}+160^{\circ}=180^{\circ} \quad$ [Using (2) and (1)]
$\Rightarrow 2 \angle \mathrm{OPR}+160^{\circ}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{OPR}=180^{\circ}-160^{\circ}=20^{\circ}$
$\Rightarrow \angle \mathrm{OPR}=10^{\circ}$

Q4. In fig. $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$.

Sol. $\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ}$
(By angle sum property)
$\Rightarrow 69^{\circ}+31^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=180^{\circ}-100^{\circ}=80^{\circ}$
Since, angles in the same segment are equal
$\angle \mathrm{BDC}=\angle \mathrm{BAC}, \angle \mathrm{BDC}=80^{\circ}$.

Q5. In figure, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four points on a circle. AC and BD intersect at a point E such that $\angle \mathrm{BEC}=130^{\circ}$ and $\angle \mathrm{ECD}=20^{\circ}$. Find $\angle \mathrm{BAC}$.

Sol. $\angle \mathrm{CED}+\angle \mathrm{BEC}=180^{\circ}$
[Linear Pair]
$\Rightarrow \angle \mathrm{CED}+130^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{CED}+180^{\circ}-130^{\circ}=50^{\circ}$ $\angle \mathrm{ECD}=20^{\circ}$
In $\triangle \mathrm{CED}, \angle \mathrm{CED}+\angle \mathrm{ECD}+\angle \mathrm{CDE}=180^{\circ}$
[Sum of all the angles of a triangle is 180°]
$\Rightarrow 50^{\circ}+20^{\circ}+\angle \mathrm{CDE}=180^{\circ} \quad$ [Using (i) and (ii)]
$\Rightarrow 70^{\circ}+\angle \mathrm{CDE}=180^{\circ}$
$\Rightarrow \angle \mathrm{CDE}=180^{\circ}-70^{\circ}$
$\Rightarrow \angle \mathrm{CDE}=110^{\circ}$
Now $\angle \mathrm{BAC}=\angle \mathrm{CDE}=110^{\circ}$
[Angle in the same segment of a circle are equal]

Q6. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}$, $\angle B A C=$ is 30°, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.

Sol.

Since angles in the same segment of a circle are equal
$\therefore \quad \angle \mathrm{BAC}=\mathrm{BDC}$
$\Rightarrow \mathrm{BDC}=30^{\circ}$
Also $\angle \mathrm{DBC}=70^{\circ}$
(Given)
\therefore In $\angle \mathrm{BCD}$, we have
$\Rightarrow \angle \mathrm{BCD}+\angle \mathrm{DBC}+\angle \mathrm{CDB}=180^{\circ} \quad$ [sum of angles of a triangle is 180°]
$\Rightarrow \angle \mathrm{BCD}+70^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=80^{\circ}$
Now, in $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{BC}$
(given)
$\therefore \quad \angle \mathrm{BCA}=\angle \mathrm{BAC}$
(angles opp. to equal sides of a triangle are equal)
$\Rightarrow \angle \mathrm{BCA}=30^{\circ} \quad\left[\angle \mathrm{BAC}=30^{\circ}\right]$
Now, $\angle \mathrm{BCA}+\angle \mathrm{ECD}=\angle \mathrm{BCD}$
$\Rightarrow 30^{\circ}+\angle \mathrm{ECD}=80^{\circ}$
$\Rightarrow \angle \mathrm{ECD}=50^{\circ}$

Q7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Sol. Since, AC and BD are diameters.
$\Rightarrow \mathrm{AC}=\mathrm{BD}$
[all diameters of a circle are equal]
Also, $\angle \mathrm{BAD}=90^{\circ}$

[angle formed in a semicircle is 90°]
Similarly, $\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{BCD}=90^{\circ}$
and $\angle \mathrm{CDA}=90^{\circ}$.
Now, in right $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$, we have

	$A C=B D$	(from (1))
	$A B=B A$	(common)
	$\angle A B C=\angle B A D$	(each equal to 90°)
\therefore	$\triangle A B C \cong \triangle B A D$	
\Rightarrow	$B C=A D$	(By RHS congruence)
	(CPCT)	

Similarly, $\mathrm{AB}=\mathrm{DC}$
Thus, ABCD is a rectangle.

Q8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Sol. Given : ABCD is a trapezium whose two non-parallel sides AD and BC are equal.
To Prove : Trapezium ABCD is a cyclic.
Construction : Draw BE $\| \mathrm{AD}$
Proof :
$\because \mathrm{AB} \mid \mathrm{DE}$
AD||BE
[Given]
[By construction]
\therefore Quadrilateral ABCD is a parallelogram.

$\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{BED}$
and $\mathrm{AD}=\mathrm{BE}$
But $\mathrm{AD}=\mathrm{BC}$
...(i) [Opp. $\angle \mathrm{s}$ of a $|\mid \mathrm{gm}]$
...(ii) [Opp. sides of a || gm]
...(iii) [Given]
From (ii) and (iii)
$\mathrm{BE}=\mathrm{BC}$
$\therefore \quad \angle \mathrm{BEC}=\angle \mathrm{BCE} \quad .$. (iv) [Angle opposite to equal sides]
$\angle \mathrm{BEC}+\angle \mathrm{BED}=180^{\circ} \quad$ [Linear pair]
$\Rightarrow \angle \mathrm{BCE}+\angle \mathrm{BAD}=180^{\circ} \quad[$ From (iv) and (i)]
\Rightarrow Trapezium ABCD is cyclic.
[\because If a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic]

Q9. Two circles intersect at two points B and C. Through B, two line segment ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively. Prove that $\angle \mathrm{ACP}=\angle \mathrm{QCD}$.

Sol. Given : Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively.
To Prove: $\angle \mathrm{ACP}=\angle \mathrm{QCD}$
Proof : $\angle \mathrm{ACP}=\angle \mathrm{ABP}$
...(i) [Angles in the same segment of a circle are equal]
$\angle \mathrm{QCD}=\angle \mathrm{QBD}$
...(ii) [Angles in the same segment of a circle are equal]
$\angle \mathrm{ABP}=\angle \mathrm{QBD}$
...(iii) [Vertically Opposite Angles]

From (i), (ii) and (iii),

$$
\angle \mathrm{ACP}=\angle \mathrm{QCD} .
$$

Q10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Sol. We have $\triangle \mathrm{ABC}$, and two circles described with diameter as $A B$ and $A C$ respectively. They intersect at a point D , other than A .
Let us join A and D.

AB is a diameter
$\therefore \quad \angle \mathrm{ADB}$ is an angle formed in a semicircle.
$\Rightarrow \angle \mathrm{ADB}=90^{\circ}$
Similarly, $\angle \mathrm{ADC}=90^{\circ}$
adding (1) and (2) $\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$
i.e., B, D and C are collinear points BC is a straight line. Thus, D lies on BC .

Q11. ABC and ADC are two right triangles with common hypotenuse AC . Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$.
Sol. AC is a hypotenuse
$\angle \mathrm{ADC}=90^{\circ}=\angle \mathrm{ABC}$
\therefore Both the triangles are in the same semicircle.
$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are concyclic.
Join BD
DC is chord
$\therefore \quad \angle \mathrm{CAD}$ and $\angle \mathrm{CBD}$ are formed on the same segment

$\therefore \quad \angle \mathrm{CAD}=\angle \mathrm{CBD}$

Q12. Prove that a cyclic parallelogram is a rectangle.
Sol. We have a cyclic parallelogram $A B C D$.
\therefore Sum of its opposite angles is 180°
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
But $\angle \mathrm{A}=\angle \mathrm{C}$
From (1) and (2), we have

$$
\angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}
$$

Similarly, $\angle \mathrm{B}=\angle \mathrm{D}=90^{\circ}$

\Rightarrow Each angle of the parallelogram ABCD is 90°
Thus, ABCD is a rectangle.

