

CLASS IX: MATHS

Chapter 9: Circles

Questions and Solutions | Exercise 9.1 - NCERT Books

- Q1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.
- **Sol.** Given: Two congruent circles C(O, r) and C(O', r) which have chords AB and CD respectively such that AB = CD.

To prove : $\angle AOB = \angle CO'D$

Proof: From \triangle AOB and \triangle CO'D, we have

$$AB = CD$$

[Given]

$$OA = O'C$$

[Each equal to r]

$$OB = O'D$$

[Each equal to r]

$$\therefore$$
 AOB $\cong \Delta$ CO'D

[By SSS-congruence]

$$\Rightarrow$$
 \angle AOB = \angle CO'D [C.P.C.T.]

- **Q2.** Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
- **Sol.** Given: Two congruent circle C(O, r) and C(O', r) which have chords AB and CD respectively, such that $\angle AOB = \angle CO'D$

To prove : AB = CD

Proof : In \triangle AOB and \triangle CO'D, we have :

OA = O'C	[each equal to r]
OB = O'D	[each equal to r]
$\angle AOB = \angle CO'D$	[given]
$\therefore \Delta AOB \cong \Delta CO'D$	[by SAS - criterion]

Hence, AB = CD [C.P.C.T.]

Questions and Solutions | Exercise 9.2 - NCERT Books

- Q1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of common chord.
- Sol. We know that if two circles intersect each other at two points, then the line joining their centres is the perpendicular bisector of their common chord.

:. Length of the common chord

$$\Rightarrow$$
 PQ = 2O'P = 2 × 3 = 6 cm

- **Q2.** If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
- **Sol.** O is the centre of the circle. Chords AB and CD of the circle are equal. P is the point of intersection of AB and CD. Join OP, draw OL \perp AB and OM \perp OD.

Here, we find
$$OL = OM$$

$$(:: AB = CD) ...(1)$$

In \triangle OLP and \triangle OMP,

$$OL = OM$$
 (By 1)

$$OP = OP$$
 (Common hypotenuse)

$$\angle OLP = \angle OMP$$
 (Each = 90°)

Then we have
$$\triangle OLP \cong \triangle OMP$$
 (RHS congruence)

By CPCT, or
$$PL = PM$$
 ...(2)

Now,
$$AL = BL = \frac{1}{2}$$
 AB; $CM = DM = \frac{1}{2}$ CD

$$\Rightarrow$$
 AL = CM (:: AB = CD) ...(3)

and
$$BL = DM$$

Subtracting (1) from (3),

$$AL - PL = CM - PM \Rightarrow AP = CP$$

Adding (2) from (4),

$$PL + BL = PM + DM \Rightarrow PB = PD$$

- Q3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
- Sol. O is the centre of the circle. Chords AB and CD of the circle are equal. P is the point of intersection of AB and CD. Join OP, draw OL \perp AB and OM \perp OD.

Here, we find
$$OL = OM$$

$$(:: AB = CD) ...(1)$$

In \triangle OLP and \triangle OMP,

$$OL = OM$$
 (By 1)

$$OP = OP$$
 (Common hypotenuse)

$$\angle OLP = \angle OMP$$
 (Each = 90°)

Then we have $\triangle OLP \cong \triangle OMP$ (RHS congruence)

By CPCT, or
$$PL = PM$$
 ...(2)

Now,
$$AL = BL = \frac{1}{2}$$
 AB;

$$CM = DM = \frac{1}{2}$$
 CD

$$\Rightarrow$$
 AL = CM (:: AB = CD)

and
$$BL = DM$$

Subtracting (1) from (3),

$$AL - PL = CM - PM$$

$$\Rightarrow$$
 AP = CP

Adding (2) from (4),

$$PL + BL = PM + DM \Rightarrow PB = PD$$

Q4. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see fig).

Sol. Given: Two circles with the common centre O. A line " ℓ " intersects the outer circle at A and D and the inner circle at B and C.

To prove : AB = CD

Construction : Draw OM $\perp \ell$.

Proof: OM $\perp \ell$ [Construction]

For the outer circle,

 \therefore AM = MD [Perpendicular from the centre bisects the chord] (1)

For the inner circle,

 $OM \perp \ell$ [Construction]

:. BM = MC [Perpendicular from the centre to the chord bisects the chord] ...(2)

Subtracting (2) from (1), we have

$$\Rightarrow$$
 AM – BM = MD – MC

$$\Rightarrow$$
 AB = CD

- Q5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?
- **Sol.** We draw SN \perp RS.

Now, SN bisects RM and also SN (produced) passes through the centre O.

Put RN = x

The
$$ar(\Delta ORS) = \frac{1}{2} \times OS \times RN$$

$$= \frac{1}{2} \times 5 \times x \quad (\because OS = OR = 5 \text{ m})$$

i.e.,
$$ar(\Delta ORS) = \frac{5}{2} x ...(1)$$

Now, draw OP \perp RS, P is mid-point of RS.

$$\Rightarrow$$
 PR = PS = 3 m \Rightarrow OP² = (5)² - (3)² = 16 \Rightarrow OP = 4 m

Here,
$$ar(\Delta ORS) = \frac{1}{2} \times RS \times OP = \frac{1}{2} \times 6 \times 4$$

i.e., $ar(\Delta ORS) = 12 \text{ m}^2$

From (1) and (2),

$$\frac{5}{2}$$
 x = 12 \Rightarrow x = 4.8 m \Rightarrow RM = 2x = 2 × 4.8 m \Rightarrow RM = 9.6 m

Thus, distance between Reshma and Mandip is 9.6 m.

Q6. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Sol. Let Ankur, Syed and David are sitting at A, S and D respectively such that AS = SD = AD i.e., $\triangle ASD$ is an equilateral triangle.

Let the length of each side of the equilateral triangle is 2x metres.

Draw AM \perp SD.

Since, \triangle ASD is an equilateral triangle,

:. AM passes through O.

$$\Rightarrow$$
 SM = $\frac{1}{2}$ SD = $\frac{1}{2}$ (2x) = x

Now, in $\triangle ASM$, we have $AM^2 + SM^2 = AS^2$

$$\Rightarrow$$
 AM² = AS² - SM² = (2x)² - x² = 4x² - x² = 3x²

$$\Rightarrow$$
 AM = $\sqrt{3}x$.

Now, OM = AM – OA =
$$(\sqrt{3}x - 20)$$
 m

$$\Rightarrow$$
 (OS = OA = 20 cm)

$$\Rightarrow$$
 $(20)^2 = x^2 + (\sqrt{3}x - 20)^2$

$$\Rightarrow$$
 400 = $x^2 + 3x^2 - 40\sqrt{3}x + 400$

$$\Rightarrow$$
 $4x^2 = 40\sqrt{3}x \Rightarrow 4x = 40\sqrt{3} \Rightarrow x = 10\sqrt{3} \text{ m}$

Now, SD =
$$2x = 2 \times 10\sqrt{3} \text{ m} = 20\sqrt{3} \text{ m}$$

Thus, the length of the string of each phone = $20\sqrt{3}$ m

Questions and Solutions | Exercise 9.3 - NCERT Books

Q1. In Fig. A, B and C are three points on a circle with centre O such that $\angle BOC = 30^{\circ}$ and $\angle AOB = 60^{\circ}$. If D is a point on the circle other than the arc $\angle ABC$, find $\angle ADC$.

Sol.
$$\angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} (60^{\circ} + 30^{\circ}) = 45^{\circ}$$

Q2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Sol.
$$:: OA = OB = AB$$
 [Given]

$$\therefore$$
 $\angle AOB = 60^{\circ} \angle ACB = \frac{1}{2} \angle AOB$

[The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]

$$=\frac{1}{2}\times60=30^{\circ}$$

: ADBC is a cyclic quadrilateral.

$$\therefore$$
 $\angle ADB + \angle ACB = 180^{\circ}$

[The sum of either pair of opposite angles of a cyclic quadrilateral is 180°]

$$\Rightarrow$$
 $\angle ADB + 30^{\circ} = 180^{\circ} \Rightarrow \angle ADB = 180^{\circ} - 30^{\circ}$

$$\Rightarrow \angle ADB = 50^{\circ}$$

Q3. In figure, $\angle PQR = 100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle OPR$.

Sol. Take a point S in the major arc. Join PS and RS.

: PQRS is a cyclic quadrilateral.

$$\therefore$$
 $\angle PQR + \angle PSR = 180^{\circ}$

[The sum of either pair of opposite angles of a cyclic quadrilateral is 180°]

$$\Rightarrow 100^{\circ} + \angle PSR = 180^{\circ} \Rightarrow \angle PSR = 180^{\circ} - 100^{\circ}$$

$$\Rightarrow \angle PSR = 80^{\circ}$$
 ...(i)

Now
$$\angle PSR = 2 \angle PSR$$

[The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]

$$= 2 \times 80^{\circ} = 160^{\circ} \dots (2)$$

In $\triangle OPR$,

$$\therefore$$
 OP = OR [radii of a circle]

$$\therefore$$
 $\angle OPR = \angle ORP \dots (3)$

[Angles opposite to equal sides of a triangle is 180°]

In $\triangle OPR$,

$$\angle OPR + \angle ORP + \angle POR = 180^{\circ}$$

[Sum of all the angles of a triangle is 180°]

$$\Rightarrow \angle OPR + \angle OPR + 160^{\circ} = 180^{\circ}$$

[Using (2) and (1)]

$$\Rightarrow 2\angle OPR + 160^{\circ} = 180^{\circ}$$

$$\Rightarrow 2\angle OPR = 180^{\circ} - 160^{\circ} = 20^{\circ}$$

$$\Rightarrow \angle OPR = 10^{\circ}$$

Q4. In fig. $\angle ABC = 69^{\circ}$, $\angle ACB = 31^{\circ}$, find $\angle BDC$.

Sol.
$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

(By angle sum property)

$$\Rightarrow$$
 69° + 31° + \angle BAC = 180°

$$\Rightarrow \angle BAC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

Since, angles in the same segment are equal

$$\angle BDC = \angle BAC$$
, $\angle BDC = 80^{\circ}$.

Q5. In figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle BEC = 130^{\circ}$ and $\angle ECD = 20^{\circ}$. Find $\angle BAC$.

Sol.
$$\angle CED + \angle BEC = 180^{\circ}$$

[Linear Pair]

$$\Rightarrow$$
 \angle CED + 130° = 180°

$$\Rightarrow$$
 \angle CED + 180 $^{\circ}$ – 130 $^{\circ}$ = 50 $^{\circ}$

$$\angle ECD = 20^{\circ}$$

In \triangle CED, \angle CED + \angle ECD + \angle CDE = 180°

[Sum of all the angles of a triangle is 180°]

$$\Rightarrow$$
 50° + 20° + \angle CDE = 180°

[Using (i) and (ii)]

$$\Rightarrow$$
 70° + \angle CDE = 180°

$$\Rightarrow \angle CDE = 180^{\circ} - 70^{\circ}$$

$$\Rightarrow$$
 \angle CDE = 110°

...(iii)

Now $\angle BAC = \angle CDE = 110^{\circ}$

[Angle in the same segment of a circle are equal]

Q6. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^{\circ}$, $\angle BAC = \text{is } 30^{\circ}$, find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.

Since angles in the same segment of a circle are equal

$$\Rightarrow$$
 BDC = 30°

&Saral

Also
$$\angle DBC = 70^{\circ}$$
 (Given)

$$\therefore$$
 In \angle BCD, we have

$$\Rightarrow \angle BCD + \angle DBC + \angle CDB = 180^{\circ}$$
 [sum of angles of a triangle is 180°]

$$\Rightarrow \angle BCD + 70^{\circ} + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BCD = 80^{\circ}$$

Now, in
$$\triangle ABC$$
, $AB = BC$ (given)

$$\therefore$$
 \angle BCA = \angle BAC

(angles opp. to equal sides of a triangle are equal)

$$\Rightarrow \angle BCA = 30^{\circ}$$

$$[\angle BAC = 30^{\circ}]$$

Now,
$$\angle BCA + \angle ECD = \angle BCD$$

$$\Rightarrow$$
 30° + \angle ECD = 80°

$$\Rightarrow$$
 $\angle ECD = 50^{\circ}$

- Q7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
- **Sol.** Since, AC and BD are diameters.

$$\Rightarrow$$
 AC = BD

[all diameters of a circle are equal]

[angle formed in a semicircle is 90°]

Similarly,
$$\angle ABC = 90^{\circ}$$
, $\angle BCD = 90^{\circ}$

and
$$\angle CDA = 90^{\circ}$$
.

Now, in right $\triangle ABC$ and $\triangle BAD$, we have

$$AC = BD$$

(from (1))

$$AB = BA$$

(common)

$$\angle ABC = \angle BAD$$

(each equal to 90°)

$$\therefore$$
 $\triangle ABC \cong \triangle BAD$

(By RHS congruence)

$$\Rightarrow$$
 BC = AD

(CPCT)

Similarly,
$$AB = DC$$

Thus, ABCD is a rectangle.

Q8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Sol. Given : ABCD is a trapezium whose two non-parallel sides AD and BC are equal.

To Prove: Trapezium ABCD is a cyclic.

 $\textbf{Construction:} Draw\ BE \| AD$

Proof:

- ∴ AB||DE [Given]
- .. Quadrilateral ABCD is a parallelogram.

$$\therefore$$
 $\angle BAD = \angle BED$

and
$$AD = BE$$

But
$$AD = BC$$

From (ii) and (iii)

...(i) [Opp.
$$\angle$$
s of a \parallel gm]

$$BE = BC$$

$$\therefore$$
 \angle BEC = \angle BCE ...(iv) [Angle opposite to equal sides]

$$\angle BEC + \angle BED = 180^{\circ}$$
 [Linear pair]

$$\Rightarrow$$
 \angle BCE + \angle BAD = 180° [From (iv) and (i)]

- ⇒ Trapezium ABCD is cyclic.
- [: If a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic]

Q9. Two circles intersect at two points B and C. Through B, two line segment ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively. Prove that $\angle ACP = \angle QCD$.

Sol. Given: Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively.

To Prove : $\angle ACP = \angle QCD$

Proof: $\angle ACP = \angle ABP$...(i

...(i) [Angles in the same segment of a circle are equal]

 $\angle QCD = \angle QBD$

...(ii) [Angles in the same segment of a circle are equal]

 $\angle ABP = \angle QBD$

...(iii) [Vertically Opposite Angles]

From (i), (ii) and (iii),

∜Saral

 $\angle ACP = \angle QCD$.

- Q10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
- Sol. We have ΔABC, and two circles described with diameter as AB and AC respectively. They intersect at a point D, other than A.Let us join A and D.

AB is a diameter

∴ ∠ADB is an angle formed in a semicircle.

 \Rightarrow $\angle ADB = 90^{\circ}$

.....(1)

Similarly, $\angle ADC = 90^{\circ}$

....(2)

adding (1) and (2) \angle ADB + \angle ADC = 180°

i.e., B, D and C are collinear points BC is a straight line. Thus, D lies on BC.

Q11. ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle CAD = \angle CBD$.

Sol. AC is a hypotenuse

$$\angle ADC = 90^{\circ} = \angle ABC$$

: Both the triangles are in the same semicircle.

 \Rightarrow A, B, C and D are concyclic.

Join BD

DC is chord

∴ ∠CAD and ∠CBD are formed on the same segment

Q12. Prove that a cyclic parallelogram is a rectangle.

Sol. We have a cyclic parallelogram ABCD.

:. Sum of its opposite angles is 180°

$$\therefore \angle A + \angle C = 180^{\circ}$$

But
$$\angle A = \angle C$$

....(2)

From (1) and (2), we have

$$\angle A = \angle C = 90^{\circ}$$

Similarly,
$$\angle B = \angle D = 90^{\circ}$$

Thus, ABCD is a rectangle.

