CLASS IX: MATHS

Chapter 6: Lines and Angles

Questions and Solutions | Exercise 6.1 - NCERT Books

Q1. In figure, lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$, find $\angle \mathrm{BOE}$ and reflex $\angle \mathrm{COE}$.

Sol. $\angle \mathrm{AOC}=\angle \mathrm{BOD}$
$\Rightarrow \angle \mathrm{AOC}=40^{\circ}$
[Vertically opposite angles]

Now, $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ [Given]
$\Rightarrow 40^{\circ}+\angle \mathrm{BOE}=70^{\circ}$
$\Rightarrow \angle \mathrm{BOE}=30^{\circ}$
$\angle \mathrm{AOE}+\angle \mathrm{BOE}=180^{\circ} \quad$ [Linear pair of angles]
$\Rightarrow \angle \mathrm{AOE}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{AOE}=150^{\circ}$
$\Rightarrow \angle \mathrm{AOC}+\angle \mathrm{COE}=150^{\circ}$
$\Rightarrow 40^{\circ}+\angle \mathrm{COE}=150^{\circ}$
$\Rightarrow \angle \mathrm{COE}=110^{\circ}$
Reflex $\angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}$

Q2. In figure, lines XY and MN intersect at O . If $\angle \mathrm{POY}=90^{\circ}$ and $\mathrm{a}: \mathrm{b}=2: 3$, find c .

Sol. Ray OP stands on line XY
$\angle \mathrm{POX}+\angle \mathrm{POY}=180^{\circ}$
$\angle \mathrm{POX}+90^{\circ}=180^{\circ}$
$\angle \mathrm{POX}=90^{\circ}$
$\angle \mathrm{POM}+\angle \mathrm{XOM}=90^{\circ}$
$\mathrm{a}+\mathrm{b}=90^{\circ}$
$\mathrm{a}: \mathrm{b}=2: 3$
$\frac{\mathrm{a}}{2}=\frac{\mathrm{b}}{3}=\mathrm{k}$ (let)
$\mathrm{a}=2 \mathrm{k}, \mathrm{b}=3 \mathrm{k}$
$3 \mathrm{k}+2 \mathrm{k}=90^{\circ}$ from (1)
$\mathrm{k}=18^{\circ}$
$\Rightarrow \mathrm{a}=36^{\circ}, \mathrm{b}=54^{\circ}$
\therefore Ray OX stands on line MN
$\angle \mathrm{XOM}+\angle \mathrm{XON}=180^{\circ}$
$\mathrm{b}+\mathrm{c}=180^{\circ}$
$54^{\circ}+\mathrm{c}=180^{\circ} \Rightarrow \mathrm{c}=126^{\circ}$

Q3. In figure, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Sol. $\angle \mathrm{PQR}=\angle \mathrm{PRQ}=\mathrm{x}$ (say)
Now, $\angle \mathrm{PQS}+\angle \mathrm{PQR}=180^{\circ}$
and $\angle \mathrm{PRT}+\angle \mathrm{PRQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PQS}+\angle \mathrm{PQR}=\angle \mathrm{PRT}+\angle \mathrm{PRQ}$
$\Rightarrow \angle \mathrm{PQS}+\mathrm{x}=\angle \mathrm{PRT}+\mathrm{x}$
[Linear pair of angles]
[Linear pair of angles]
$\Rightarrow \angle \mathrm{PQS}=\angle \mathrm{PRT}$
$\left[\because\right.$ each $\left.=180^{\circ}\right]$
[By (1)]

Q4. In figure, if $x+y=w+z$, then prove that $A O B$ is a line.

Sol. $\mathrm{x}+\mathrm{y}=\mathrm{w}+\mathrm{z}$
$x+y+w+z=360^{\circ}$
$\Rightarrow 2(\mathrm{x}+\mathrm{y})=360^{\circ}, \mathrm{x}+\mathrm{y}=180^{\circ}$
[Complete angle]
$\Rightarrow \mathrm{AOB}$ is a line.
[From (1)]

Q5. In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$.

Sol. $\angle \mathrm{POR}=\angle \mathrm{QOR}=90^{\circ}$
$[\because \mathrm{OR} \perp \mathrm{PQ}$ at O$]$
Now, $\angle \mathrm{QOS}=\angle \mathrm{QOR}+\angle \mathrm{ROS}$
$\Rightarrow \angle \mathrm{QOS}=90^{\circ}+\angle \mathrm{ROS}$
...(2) $\{$ by (1) $\}$
$\angle \mathrm{POS}+\angle \mathrm{ROS}=\angle \mathrm{POR}$
$\Rightarrow \angle \mathrm{POS}=\angle \mathrm{POR}-\angle \mathrm{ROS}$
$\Rightarrow \angle \mathrm{POS}=90^{\circ}-\angle \mathrm{ROS}$
Subtracting (3) from (2),
$\angle \mathrm{QOS}-\angle \mathrm{POS}=\left\{90^{\circ}+\angle \mathrm{ROS}\right\}-\left\{90^{\circ}-\angle \mathrm{ROS}\right\}$
$=2 \times \angle \mathrm{ROS}$
$\Rightarrow 2 \times \angle \mathrm{ROS}=\{\angle \mathrm{QOS}-\angle \mathrm{POS}\}$
i.e., $\angle \mathrm{ROS}=\frac{1}{2}\{\angle \mathrm{QOS}-\angle \mathrm{POS}\}$

Q6. It is given that $\angle \mathrm{XYZ}=64^{\circ}$ and XY is produced to point P . Draw a figure from the given information. if ray YQ bisects $\angle \mathrm{ZYP}$, find $\angle \mathrm{XYQ}$ and reflex $\angle \mathrm{QYP}$.

Sol. $\angle \mathrm{XYZ}+\angle \mathrm{ZYP}=180^{\circ}$
[Linear pair]
$\Rightarrow 64+\angle \mathrm{ZYP}=180^{\circ}$
$\Rightarrow \angle \mathrm{ZYP}=116^{\circ}$

Ray YQ bisects angle $\angle \mathrm{ZYP}$
$\Rightarrow \angle \mathrm{PYQ}=\angle \mathrm{ZYP}=\frac{116}{2}=58^{\circ}$
Reflex $\angle \mathrm{QYP}=360^{\circ}-58^{\circ}=302^{\circ}$
$\angle \mathrm{XYQ}=\angle \mathrm{XYZ}+\angle \mathrm{ZYQ}$
$=64^{\circ}+58^{\circ}=122^{\circ}$

Questions and Solutions | Exercise 6.2 - NCERT Books

Q1. In figure, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

Sol. $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{CD} \| \mathrm{EF}$
$\Rightarrow \mathrm{AB} \| \mathrm{EF}$
$\Rightarrow \mathrm{x}=\mathrm{z} \quad$ (Alternate angles)
Now, $x+y=180^{\circ}$
(Pair of interior angles on the same side of the transversal)
$\Rightarrow \mathrm{z}+\mathrm{y}=180^{\circ}$ i.e, $\mathrm{y}+\mathrm{z}=180^{\circ}$
Also, we are given that, $\mathrm{y}: \mathrm{z}=3: 7$
Then, $\mathrm{y}=\frac{3}{10} \times 180^{\circ}=54^{\circ}$
and $z=\frac{7}{10} \times 180^{\circ}=126^{\circ}$
We have $x=z=126^{\circ}$
Therefore, $x=126^{\circ}$

Q2. In figure, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{FE} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Sol. $\mathrm{AB} \| \mathrm{CD}$
$\angle \mathrm{AGE}=\angle \mathrm{GED}=126^{\circ}$
$\Rightarrow \angle \mathrm{GEF}+90^{\circ}=126^{\circ}$
$\angle \mathrm{GEF}=36^{\circ}$
$\angle \mathrm{GEC}+\angle \mathrm{GEF}+\angle \mathrm{FED}=180^{\circ}$
$\angle \mathrm{GEC}+126^{\circ}=180^{\circ}$
$\angle \mathrm{GEC}=180^{\circ}-126^{\circ}=54^{\circ}$
$\angle \mathrm{FGE}=\angle \mathrm{GEC}=54^{\circ}$
[given]
[Alternate angles]
[Straight line]
[Straight line]
[Alternate angles]
Q3. In figure, if $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.

Sol. Through R, we draw XRY \| PQ.

$\Rightarrow \mathrm{XRY} \| \mathrm{ST} \quad(\because \mathrm{PR} \| \mathrm{ST})$
$\angle \mathrm{QRX}+110^{\circ}=180^{\circ}$
and $\angle \mathrm{YRS}+130^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{QRX}=70^{\circ}$
and $\angle \mathrm{YRS}=50^{\circ}$
Now, $\angle \mathrm{QRX}+\angle \mathrm{QRS}+\angle \mathrm{YRS}=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle \mathrm{QRS}+50^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{QRS}=60^{\circ}$
Q4. In figure, if $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y .

Sol. $\mathrm{AB} \| \mathrm{CD}$
$\mathrm{x}=\angle \mathrm{APQ}=50^{\circ}$
[given]
$\angle \mathrm{APQ}+\mathrm{y}=\angle \mathrm{PRD}=127^{\circ}$
[Alternate angles]
$50^{\circ}+\mathrm{y}=127^{\circ}$
$y=127^{\circ}-50^{\circ}=77^{\circ}$
Q5. In figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B , the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along $C D$. Prove that $A B \| C D$.

Sol. We draw $\mathrm{BE} \perp \mathrm{RS}$, then BE is also $\perp \mathrm{PQ}$
($\because \mathrm{PQ} \| \mathrm{RS}$)
We draw $\mathrm{CF} \perp \mathrm{PQ}$. Here, also $\mathrm{CF} \perp \mathrm{RS}$

Here, if we consider PQ as transversal intersecting lines BE and CF, then each pair of corresponding angles is equal. (each equal to 90°)
Thus, we have BE $\|$ CF.
Now, $\angle \mathrm{ABE}=\angle \mathrm{CBE}$
(Angle of incidence $=$ Angle of reflection)
$\Rightarrow \angle \mathrm{ABE}=\angle \mathrm{CBE}=\frac{1}{2} \times \angle \mathrm{ABC}$
Similarly, $\angle \mathrm{BCF}=\angle \mathrm{FCD}=\frac{1}{2} \times \angle \mathrm{DCB}$
Now, BE \| CF
$\Rightarrow \angle \mathrm{CBE}=\angle \mathrm{BCF}$
(alternate angles)
$\Rightarrow \frac{1}{2} \times \angle \mathrm{ABC}=\frac{1}{2} \times \angle \mathrm{DCB}\{$ by (1) and (2) $\}$
$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{DCB}$
$\Rightarrow \mathrm{AB} \| \mathrm{CD}$

