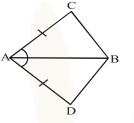
Å

CLASS IX: MATHS Chapter 7: Triangles

Questions and Solutions | Exercise 7.1 - NCERT Books

Q1. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?



Sol. Given : In quadrilateral ACBD, AC = AD and AB bisect $\angle A$. To prove : $\triangle ABC \cong \triangle ABD$ Proof : In $\triangle ABC$ and $\triangle ABD$ AC = AD (Given) AB = AB (Common) $\angle CAB = \angle DAB$ (AB bisect $\angle A$) $\therefore \triangle ABC \cong \triangle ABD$ (by SAS criteria) BC = BD (by CPCT)

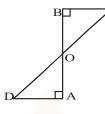
- Q2. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that (i) $\triangle ABD \cong \triangle BAC$ (ii) BD = AC(iii) $\angle ABD = \angle BAC$.
- **Sol.** In \triangle ABD and \triangle BAC,
 - AD = BC(Given) $\angle DAB = \angle CBA$ (Given)AB = AB(Common side) \therefore By SAS congruence rule, we have $\triangle ABD \cong \triangle BAC$ Also, by CPCT, we haveBD = AC and $\angle ABD = \angle BAC$

OA = OB

: CD bisect AB.

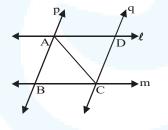
Å

Q3. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.

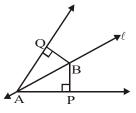


- Sol.Given : AD and BC are equal perpendiculars to line AB.
To prove : CD bisect AB
Proof : In $\triangle OAD$ and $\triangle OBC$ AD = BC(Given) $\angle OAD = \angle OBC$ (Each 90°) $\angle AOD = \angle BOC$ (Vertically opposite angles) $\triangle OAD \cong \triangle OBC$ (AAS rule)
- Q4. ℓ and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\Delta ABC \cong \Delta CDA$.

(by CPCT)



- Sol. In $\triangle ABC$ and $\triangle CDA$ $\angle CAB = \angle ACD$ (Pair of alternate angle) $\angle BCA = \angle DAC$ (Pair of alternate angle) AC = AC (Common side) $\therefore \triangle ABC \cong \triangle CDA$ (ASA criteria)
- **Q5.** Line ℓ is the bisector of an angle $\angle A$ and B is any point on ℓ . BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that :

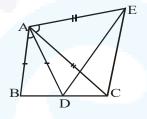


Å

- (i) $\triangle APB \cong \triangle AQB$ (ii) BP = BQ or B is equidistant from the arms of $\angle A$.
- **Sol.** Given : line ℓ is bisector of angle A and B is any point on ℓ . BP and BQ are perpendicular from B to arms of $\angle A$.

To prove : (i) \triangle APB $\cong \triangle$ AQB (ii) BP = BQ. Proof : (i) In \triangle APB and \triangle AQB \angle BAP = \angle BAQ (ℓ is bisector) AB = AB (common) \angle BPA = \angle BQA (Each 90°) $\therefore \triangle$ APB $\cong \triangle$ AQB (AAS rule) (ii) \triangle APB $\cong \triangle$ AQB BP = BQ (By CPCT)

Q6. In figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.



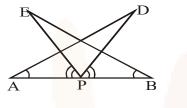
```
Sol. Given : AC = AE
AB = AD,
\angle BAD = \angle EAC
To prove : BC = DE
Proof : In \triangle ABC and \triangle ADE
AB = AD
                                     (Given)
AC = AE
                                     (Given)
\angle BAD = \angle EAC
Add \angle DAC to both
\Rightarrow \angle BAD + \angle DAC = \angle DAC + \angle EAC
\angle BAC = \angle DAE
\Delta ABC \cong \Delta ADE
                                    (SAS rule)
BC = DE
                                     (By CPCT)
```

Å

Q7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that

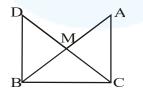
 $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that

(i) $\Delta DAP \cong \Delta EBP$ (ii) AD = BE



Sol. \angle EPA = \angle DPB (Given) $\Rightarrow \angle EPA + \angle DPE = \angle DPB + \angle DPE$ $\Rightarrow \angle APD = \angle BPE$...(1) Now, in $\triangle DAP$ and $\triangle EBP$, we have AP = PB(:: P is mid point of AB) $\angle PAD = \angle PBE$ $(:: \angle PAD = \angle BAD, \angle PBE = \angle ABE$ and we are given that $\angle BAD = \angle ABE$ Also, $\angle APD = \angle BPE$ (By 1) $\therefore \Delta DAP \cong \Delta EBP$ (By ASA congruence) \Rightarrow AD = BE (By CPCT)

Q8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that :



(i) $\triangle AMC \cong \triangle BMD$ (ii) $\angle DBC$ is a right angle. (iii) $\triangle DBC \cong \triangle ACB$ (iv) $CM = \frac{1}{2} AB$

Class IX Maths

Ą

```
Sol. (i) In \triangleAMC \cong \triangleBMD,
      AM = BM
                                             (:: M is mid point of AB)
      \angle AMC = \angle BMD
                                             (Vertically opposite angles)
      CM = DM
                                             (Given)
      \therefore \Delta AMC \cong \Delta BMD
                                             (By SAS congruence)
 (ii) \angle AMC = \angle BMD,
 \Rightarrow \angle ACM = \angle BDM
                                             (By CPCT)
 \Rightarrow CA || BD
 \Rightarrow \angle BCA + \angle DBC = 180^{\circ}
 \Rightarrow \angle DBC = 90^{\circ}
                                             (:: \angle BCA = 90^\circ)
 (iii) In \triangleDBC and \triangleACB,
      DB = AC
                                             (:: \triangle BMD \cong \triangle AMC)
      \angle DBC = \angle ACB
                                             (Each = 90^{\circ})
      BC = BC
                                             (Common side)
      \therefore \Delta DBC \cong \Delta ACB (By SAS congruence)
 (iv) In \triangle DBC \cong \triangle ACB \implies CD = AB ...(1)
      Also, \triangle AMC \cong \triangle BMD
 \Rightarrow CM = DM
 \Rightarrow CM = DM = \frac{1}{2} CD
 \Rightarrow CD = 2 CM ...(2)
 From (1) and (2),
 2 \text{ CM} = \text{AB}
 \Rightarrow CM = \frac{1}{2} AB
```

Questions and Solutions | Exercise 7.2 - NCERT Books

Q1. In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that : (i) OB = OC (ii) AO bisects $\angle A$.

Sol. (i) In $\triangle ABC$, OB and OC are bisectors of $\angle B$ and $\angle C$.

$$\therefore \angle OBC = \frac{1}{2} \angle B \qquad \dots(1)$$

$$\angle OCB = \frac{1}{2} \angle C \qquad \dots(2)$$

Also, AB = AC (Given)
$$\Rightarrow \angle B = \angle C \qquad \dots(3)$$

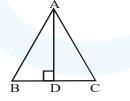
From (1), (2), (3), we have
$$\angle OBC = \angle OCB$$

Now, in $\triangle OBC$, we have
$$\angle OBC = \angle OCB$$

$$\Rightarrow OB = OC$$

(Sides opposite to equal angles are equal)

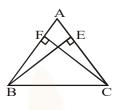
- (ii) $\angle OBA = \frac{1}{2} \angle B$ and $\angle OCA = \frac{1}{2} \angle C$ $\Rightarrow \angle OBA = \angle OCA$ ($\because \angle B = \angle C$) AB = AC and OB = OC $\therefore \triangle OAB \cong \triangle OAC$ (SAS congruence criteria) $\Rightarrow \angle OAB = \angle OAC$ $\Rightarrow AO$ bisects $\angle A$.
- **Q2.** In $\triangle ABC$, AD is the perpendicular bisector of BC. Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.



Sol. Given : In $\triangle ABC$, AD is perpendicular bisector of BC. To Prove : $\triangle ABC$ is isosceles \triangle with AB = AC Proof : In $\triangle ADB$ and $\triangle ADC$ $\angle ADB = \angle ADC$ (Each 90°) DB = DC (AD is \perp bisector of BC) AD = AD (Common) $\triangle ADB \cong \triangle ADC$ (By SAS rule) AB = AC (By CPCT) $\therefore \triangle ABC$ is an isosceles \triangle with AB = AC

Ą

Q3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Show that these altitudes are equal.

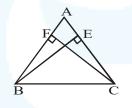


Sol. In \triangle ABE and \triangle ACF, we have

$\angle BEA = \angle CFA$	$(Each = 90^{\circ})$
$\angle A = \angle A$	(Common angle)
AB = AC	(Given)
$\therefore \Delta ABE \cong \Delta ACF$	(By AAS congruence criteria)
\Rightarrow BE = CF	(By CPCT)

Q4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (See figure). Show that (i) $\triangle ABE \cong \triangle ACF$

(ii) AB = AC, i.e., ABC is an isosceles triangle.

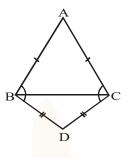


Sol. (i) In \triangle ABE and \triangle ACF, we have

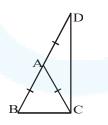
 $\angle A = \angle A \qquad (Common)$ $\angle AEB = \angle AFC \qquad (Each = 90^{\circ})$ $BE = CF \qquad (Given)$ $\therefore \Delta ABE \cong \Delta ACF(By ASA \text{ congruence})$ $(ii) \Delta ABE \cong \Delta ACF$ $\Rightarrow AB = AC \qquad (By CPCT)$

Å

Q5. ABC and DBC are two isosceles triangles on the same base BC (see figure). Show that $\angle ABD = \angle ACD$.



- Sol. Given : ABC and BCD are two isosceles triangle on common base BC. To prove : $\angle ABC = \angle ACD$ Proof : ABC is an isosceles Triangle on base BC $\therefore \angle ABC = \angle ACB$...(1) $\therefore DBC$ is an isosceles \triangle on base BC. $\angle DBC = \angle DCB$...(2) Adding (1) and (2) $\angle ABC + \angle DBC = \angle ACB + \angle DCB$ $\Rightarrow \angle ABD = \angle ACD$
- **Q6.** $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see figure). Show that $\angle BCD$ is a right angle.

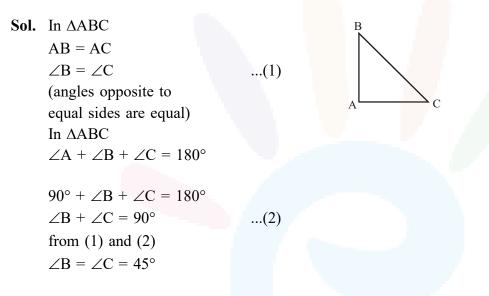


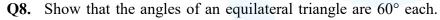
Sol. In $\triangle ABC$, AB = AC $\Rightarrow \angle ACB = \angle ABC$...(1) In $\triangle ACD$, AD = AB (By construction) $\Rightarrow AD = AC$ $\Rightarrow \angle ACD = \angle ADC$...(2) Adding (1) and (2),

Å

 $\angle ACB + \angle ACD = \angle ABC + \angle ADC$ $\Rightarrow \angle BCD = \angle ABC + \angle ADC$ In $\angle DBC + \angle ABC + \angle BCD + \angle CDB = 180^{\circ}$ $\Rightarrow \angle BCD = 180^{\circ}$ $\Rightarrow \angle BCD = 90^{\circ}$

Q7. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.





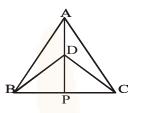
Sol. \triangle ABC is equilateral triangle.

 $\Rightarrow AB = BC = CA$ Now, AB = BC $\Rightarrow BA = BC$ $\Rightarrow \angle C = \angle A \dots (1)$ Similarly, $\angle A = \angle B \dots (2)$ From (1) and (2), $\angle A = \angle B = \angle C \dots (3)$ Also, $\angle A + \angle B + \angle C = 180^{\circ} \dots (4)$ $\Rightarrow \angle A = \angle B = \angle C = \frac{1}{3} \times 180^{\circ} = 60^{\circ}$

Ą

Questions and Solutions | Exercise 7.3 - NCERT Books

Q1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P, show that



(i) $\triangle ABD \cong \triangle ACD$

(ii) $\triangle ABP \cong \triangle ACP$

(iii) AP bisects $\angle A$ as well as $\angle D$

(iv) AP is the perpendicular bisector of BC.

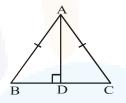
Sol. In \triangle ABD and \triangle ACD,

AB = AC(:: \triangle ABC is isosceles) DB = DC($:: \Delta DBC$ is isosceles) AD = AD(Common side) $\therefore \Delta ABD \cong \Delta ACD$ (By SSS congruence rule) (ii) Now, $\triangle ABD \cong \triangle ACD$ $\Rightarrow \angle BAD = \angle CAD$ (By CPCT) ...(1) In $\triangle ABP$ and $\triangle ACP$, (:: \triangle ABC is isosceles) AB = AC $\Rightarrow \angle BAP = \angle CAP$ (By 1) AP = AP(common side) $\therefore \Delta ABP \cong \Delta ACP$ (By SAS congruence rule) (iii) $\triangle ABD \cong \triangle ADC$ (Proved above) $\angle BAD = \angle CAD$ (by CPCT) $\angle ADB = \angle ADC$ (by CPCT) $180 - \angle ADB = 180 - \angle ADC$ $\Rightarrow \angle BDP = \angle CDP$ AP bisects $\angle A$ as well as $\angle D$ (iv) $\triangle ABP \cong \triangle ACP$ \Rightarrow BP = CP (By CPCT)

Å

 $\Rightarrow AP \text{ bisects BC}$ $\angle APB = \angle APC \text{ (By CPCT)}$ $\angle APB + \angle APC = 180^{\circ}$ $2\angle APB = 180^{\circ}$ $\angle APB = 90^{\circ}$ AP is perpendicular bisector of BC

- **Q2.** AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that (i) AD bisects BC (ii) AD bisects $\angle A$
- **Sol.** Given : AD is an altitude of an isosceles triangle ABC in which AB = AC.

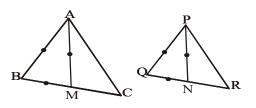


To Prove : (i) AD bisect BC. (ii) AD bisect $\angle A$. Proof : (i) In right $\triangle ADB$ and right $\triangle ADC$. Hyp.AB = Hyp. AC $\angle ADB = \angle ADC$ (Each 90°) Side AD = side AD (Common) $\triangle ADB \cong \triangle ADC$ (RHS rule) $\Rightarrow BD = CD$ (By CPCT) $\Rightarrow AD$ bisect BC (ii) $\triangle ADB \cong \triangle ADC$

- $\angle BAD = \angle CAD$ (By CPCT) $\Rightarrow AD$ bisect $\angle A$
- Q3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to side PQ and QR and median PN of Δ PQR (see figure). Show that :

(i) $\triangle ABM \cong \triangle PQN$

(ii) $\triangle ABC \cong \triangle PQR$



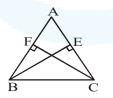
Д

Sol. (i) BM = $\frac{1}{2}$ BC (:: M is mid-point of BC) $QN = \frac{1}{2}QR$ (:: N is mid-point of QR) \Rightarrow BM = QN (:: BC = QR is given) Now, in $\triangle ABM$ and $\triangle PQN$, we have AB = PQ(Given) BM = QN(Proved) AM = PN(Given) $\therefore \Delta ABM \cong \Delta PQN$ (SSS congruence criteria) (ii) $\triangle ABM \cong \triangle PQN$ $\Rightarrow \angle ABM = \angle PQN$ $\angle B = \angle Q$ (By CPCT)

Now, in $\triangle ABC$ and $\triangle PQN$, AB = PQ, $\angle B = \angle Q$ and BC = QN

 $\Rightarrow \Delta ABC \cong \Delta PQN$ [by SAS cong.]

- **Q4.** BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- **Sol.** Given BE and CF are two altitude of $\triangle ABC$.



To prove : $\triangle ABC$ is isosceles. Proof : In right $\triangle BEC$ and right $\triangle CFB$ side BE = side CF (Given) Hyp.BC = Hyp CB (Common) $\angle BEC = \angle BFC$ (Each 90°) $\triangle BEC \cong \triangle CFB$ (RHS Rule)

Å

 $\therefore \angle BCE = \angle CBF \qquad (By CPCT)$ AB = AC (Side opp. to equal angles are equal) $\triangle ABC$ is isosceles.

Q5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that \angle B = \angle C

Sol. In $\triangle APB$ and $\triangle APC$ AB = AC (Given) $\angle APB = \angle APC$ (Each = 90°) AP = AP (common side) Therefore, by RHS congruence criteria, we have $\triangle APB \cong \triangle APC$ $\Rightarrow \angle ABP = \angle ACP$ (By CPCT) $\Rightarrow \angle B = \angle C$