

Class XI : Maths Chapter 1 : Sets

Questions and Solutions | Exercise 1.1 - NCERT Books

Question 1:

Which of the following are sets? Justify our answer.

- (i) The collection of all months of a year beginning with the letter J.
- (ii) The collection of ten most talented writers of India.
- (iii) A team of eleven best-cricket batsmen of the world.
- (iv) The collection of all boys in your class.
- (v) The collection of all natural numbers less than 100.
- (vi) A collection of novels written by the writer Munshi Prem Chand.
- (vii) The collection of all even integers.
- (viii) The collection of questions in this Chapter.
- (ix) A collection of most dangerous animals of the world.

Answer

(i) The collection of all months of a year beginning with the letter J is a well-defined collection of objects because one can definitely identify a month that belongs to this collection.

Hence, this collection is a set.

- (ii) The collection of ten most talented writers of India is not a well-defined collection because the criteria for determining a writer's talent may vary from person to person. Hence, this collection is not a set.
- (iii) A team of eleven best cricket batsmen of the world is not a well-defined collection because the criteria for determining a batsman's talent may vary from person to person. Hence, this collection is not a set.
- (iv) The collection of all boys in your class is a well-defined collection because you can definitely identify a boy who belongs to this collection.

Hence, this collection is a set.

(v) The collection of all natural numbers less than 100 is a well-defined collection because one can definitely identify a number that belongs to this collection.

Hence, this collection is a set.

(vi) A collection of novels written by the writer Munshi Prem Chand is a well-defined collection because one can definitely identify a book that belongs to this collection.

Hence, this collection is a set.

(vii) The collection of all even integers is a well-defined collection because one can definitely identify an even integer that belongs to this collection.

Hence, this collection is a set.

(viii) The collection of questions in this chapter is a well-defined collection because one can definitely identify a question that belongs to this chapter.

Hence, this collection is a set.

(ix) The collection of most dangerous animals of the world is not a well-defined collection because the criteria for determining the dangerousness of an animal can vary from person to person.

Hence, this collection is not a set.

Question 2:

Let A = $\{1, 2, 3, 4, 5, 6\}$. Insert the appropriate symbol ∈or \notin in the blank spaces:

- (i) 5...A (ii) 8...A (iii) 0...A
- (iv) 4...A (v) 2...A (vi) 10...A

Answer

- (i) $5 \in A$
- (ii) 8 ∉ A
- **(iii)** 0 ∉ A
- **(iv)** 4 ∈ A
- **(v)** 2 ∈ A
- **(vi)** 10 ∉ A

Question 3:

Write the following sets in roster form:

- (i) $A = \{x: x \text{ is an integer and } -3 < x < 7\}.$
- (ii) $B = \{x: x \text{ is a natural number less than 6}\}.$
- (iii) $C = \{x: x \text{ is a two-digit natural number such that the sum of its digits is 8} \}$
- (iv) $D = \{x: x \text{ is a prime number which is divisor of } 60\}.$
- (\mathbf{v}) E = The set of all letters in the word TRIGONOMETRY.
- (vi) F =The set of all letters in the word BETTER.

Answer

(i)
$$A = \{x: x \text{ is an integer and } -3 < x < 7\}$$

The elements of this set are -2, -1, 0, 1, 2, 3, 4, 5, and 6 only.

Therefore, the given set can be written in roster form as

$$A = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\}$$

(ii)
$$B = \{x: x \text{ is a natural number less than } 6\}$$

The elements of this set are 1, 2, 3, 4, and 5 only.

Therefore, the given set can be written in roster form as

$$B = \{1, 2, 3, 4, 5\}$$

(iii)
$$C = \{x: x \text{ is a two-digit natural number such that the sum of its digits is 8} \}$$

The elements of this set are 17, 26, 35, 44, 53, 62, 71, and 80 only.

Therefore, this set can be written in roster form as

$$C = \{17, 26, 35, 44, 53, 62, 71, 80\}$$

(iv)
$$D = \{x: x \text{ is a prime number which is a divisor of } 60\}$$

2	60
2	30
3	15
	5

$$.60 = 2 \times 2 \times 3 \times 5$$

The elements of this set are 2, 3, and 5 only.

Therefore, this set can be written in roster form as $D = \{2, 3, 5\}$.

(v) E = The set of all letters in the word TRIGONOMETRY

There are 12 letters in the word TRIGONOMETRY, out of which letters T, R, and O are repeated.

Therefore, this set can be written in roster form as

$$E = \{T, R, I, G, O, N, M, E, Y\}$$

(vi) F = The set of all letters in the word BETTER

There are 6 letters in the word BETTER, out of which letters E and T are repeated.

Therefore, this set can be written in roster form as

$$F = \{B, E, T, R\}$$

Question 4:

Write the following sets in the set-builder form:

Answer

(i)
$$\{3, 6, 9, 12\} = \{x: x = 3n, n \in \mathbb{N} \text{ and } 1 \le n \le 4\}$$

It can be seen that $2 = 2^1$, $4 = 2^2$, $8 = 2^3$, $16 = 2^4$, and $32 = 2^5$.

$$\therefore \{2, 4, 8, 16, 32\} = \{x: x = 2^n, n \in \mathbb{N} \text{ and } 1 \le n \le 5\}$$

It can be seen that $5 = 5^1$, $25 = 5^2$, $125 = 5^3$, and $625 = 5^4$.

$$\therefore \{5, 25, 125, 625\} = \{x: x = 5^n, n \in \mathbb{N} \text{ and } 1 \le n \le 4\}$$

It is a set of all even natural numbers.

$$\therefore \{2, 4, 6 ...\} = \{x: x \text{ is an even natural number}\}$$

It can be seen that $1 = 1^2$, $4 = 2^2$, $9 = 3^2$... $100 = 10^2$.

$$\therefore \{1, 4, 9... 100\} = \{x: x = n^2, n \in \mathbb{N} \text{ and } 1 \le n \le 10\}$$

Question 5:

List all the elements of the following sets:

(i)
$$A = \{x: x \text{ is an odd natural number}\}$$

(ii) B =
$$\{x: x \text{ is an integer, } -\frac{1}{2} < x < \frac{9}{2} \}$$

(iii)
$$C = \{x: x \text{ is an integer, } x^2 \le 4\}$$

(iv)
$$D = \{x: x \text{ is a letter in the word "LOYAL"}\}$$

(v)
$$E = \{x: x \text{ is a month of a year not having 31 days}\}$$

(vi) $F = \{x: x \text{ is a consonant in the English alphabet which proceeds } k\}$.

Answer

(i) $A = \{x: x \text{ is an odd natural number}\} = \{1, 3, 5, 7, 9 ...\}$

(ii) B =
$$\{x: x \text{ is an integer}; -\frac{1}{2} < n < \frac{9}{2} \}$$

$$-\frac{1}{2} = -0.5 \qquad \frac{9}{2} = 4.5$$
 It can be seen that

$$B = \{0,1,2,3,4\}$$

(iii)
$$C = \{x: x \text{ is an integer; } x^2 \le 4 \}$$

It can be seen that

$$(-1)^2 = 1 \le 4$$
; $(-2)^2 = 4 \le 4$; $(-3)^2 = 9 > 4$

$$0^2 = 0 \le 4$$

$$1^2 = 1 \le 4$$

$$2^2 = 4 \le 4$$

$$3^2 = 9 > 4$$

$$:C = \{-2, -1, 0, 1, 2\}$$

(iv)
$$D = (x: x \text{ is a letter in the word "LOYAL"}) = \{L, O, Y, A\}$$

(v)
$$E = \{x: x \text{ is a month of a year not having 31 days}\}$$

= {February, April, June, September, November}

(vi) $F = \{x: x \text{ is a consonant in the English alphabet which precedes } k\}$ = $\{b, c, d, f, g, h, j\}$

Question 6:

Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

(iv) {1, 3, 5, 7, 9}

(d) {*x*: *x* is a letter of the word MATHEMATICS}

Answer

- (i) All the elements of this set are natural numbers as well as the divisors of 6. Therefore, (i) matches with (c).
- (ii) It can be seen that 2 and 3 are prime numbers. They are also the divisors of 6. Therefore, (ii) matches with (a).
- (iii) All the elements of this set are letters of the word MATHEMATICS. Therefore, (iii) matches with (d).
- (iv) All the elements of this set are odd natural numbers less than 10. Therefore, (iv) matches with (b).

Class XI Maths www.esaral.com 6 Class XI : Maths Chapter 1 : Sets

Questions and Solutions | Exercise 1.2 - NCERT Books

Question 1:

Which of the following are examples of the null set

- (i) Set of odd natural numbers divisible by 2
- (ii) Set of even prime numbers
- (iii) $\{x:x \text{ is a natural numbers, } x < 5 \text{ and } x > 7 \}$
- (iv) {y:y is a point common to any two parallel lines}

Answer

- (i) A set of odd natural numbers divisible by 2 is a null set because no odd number is divisible by 2.
- (ii) A set of even prime numbers is not a null set because 2 is an even prime number.
- (iii) $\{x: x \text{ is a natural number, } x < 5 \text{ and } x > 7\}$ is a null set because a number cannot be simultaneously less than 5 and greater than 7.
- (iv) $\{y: y \text{ is a point common to any two parallel lines}\}$ is a null set because parallel lines do not intersect. Hence, they have no common point.

Question 2:

Which of the following sets are finite or infinite

- (i) The set of months of a year
- (ii) {1, 2, 3 ...}
- (iii) {1, 2, 3 ... 99, 100}
- (iv) The set of positive integers greater than 100
- (v) The set of prime numbers less than 99

Answer

- (i) The set of months of a year is a finite set because it has 12 elements.
- (ii) {1, 2, 3 ...} is an infinite set as it has infinite number of natural numbers.
- (iii) {1, 2, 3 ...99, 100} is a finite set because the numbers from 1 to 100 are finite in number.
- (iv) The set of positive integers greater than 100 is an infinite set because positive integers greater than 100 are infinite in number.
- (v) The set of prime numbers less than 99 is a finite set because prime numbers less than 99 are finite in number.

Question 3:

State whether each of the following set is finite or infinite:

- (i) The set of lines which are parallel to the x-axis
- (ii) The set of letters in the English alphabet
- (iii) The set of numbers which are multiple of 5
- (iv) The set of animals living on the earth
- (v) The set of circles passing through the origin (0, 0)

Answer

- (i) The set of lines which are parallel to the x-axis is an infinite set because lines parallel to the x-axis are infinite in number.
- (ii) The set of letters in the English alphabet is a finite set because it has 26 elements.
- (iii) The set of numbers which are multiple of 5 is an infinite set because multiples of 5 are infinite in number.
- (iv) The set of animals living on the earth is a finite set because the number of animals living on the earth is finite (although it is quite a big number).
- (\mathbf{v}) The set of circles passing through the origin (0, 0) is an infinite set because infinite number of circles can pass through the origin.

Question 4:

In the following, state whether A = B or not:

- (i) $A = \{a, b, c, d\}$; $B = \{d, c, b, a\}$
- (ii) $A = \{4, 8, 12, 16\}; B = \{8, 4, 16, 18\}$
- (iii) $A = \{2, 4, 6, 8, 10\}$; $B = \{x: x \text{ is positive even integer and } x \le 10\}$

(iv) $A = \{x: x \text{ is a multiple of } 10\}; B = \{10, 15, 20, 25, 30 ...\}$

Answer

(i)
$$A = \{a, b, c, d\}; B = \{d, c, b, a\}$$

The order in which the elements of a set are listed is not significant.

A = B

(ii)
$$A = \{4, 8, 12, 16\}; B = \{8, 4, 16, 18\}$$

It can be seen that $12 \in A$ but $12 \notin B$.

∴A ≠ B

(iii)
$$A = \{2, 4, 6, 8, 10\}$$

B = $\{x: x \text{ is a positive even integer and } x \le 10\}$

$$= \{2, 4, 6, 8, 10\}$$

∴A = B

(iv) $A = \{x: x \text{ is a multiple of } 10\}$

$$B = \{10, 15, 20, 25, 30 ...\}$$

It can be seen that $15 \in B$ but $15 \notin A$.

∴A ≠ B

Question 5:

Are the following pair of sets equal? Give reasons.

(i) A = {2, 3}; B = {x: x is solution of
$$x^2 + 5x + 6 = 0$$
}

(ii) $A = \{x: x \text{ is a letter in the word FOLLOW}\}; B = \{y: y \text{ is a letter in the word WOLF}\}$

Answer

(i)
$$A = \{2, 3\}$$
; $B = \{x: x \text{ is a solution of } x^2 + 5x + 6 = 0\}$

The equation $x^2 + 5x + 6 = 0$ can be solved as:

$$x(x + 3) + 2(x + 3) = 0$$

$$(x + 2)(x + 3) = 0$$

$$x = -2 \text{ or } x = -3$$

$$A = \{2, 3\}; B = \{-2, -3\}$$

∴A ≠ B

(ii) $A = \{x: x \text{ is a letter in the word FOLLOW}\} = \{F, O, L, W\}$

 $B = \{y: y \text{ is a letter in the word WOLF}\} = \{W, O, L, F\}$

The order in which the elements of a set are listed is not significant.

$$A = B$$

Question 6:

From the sets given below, select equal sets:

$$A = \{2, 4, 8, 12\}, B = \{1, 2, 3, 4\}, C = \{4, 8, 12, 14\}, D = \{3, 1, 4, 2\}$$

$$E = \{-1, 1\}, F = \{0, a\}, G = \{1, -1\}, H = \{0, 1\}$$

Answer

$$A = \{2, 4, 8, 12\}; B = \{1, 2, 3, 4\}; C = \{4, 8, 12, 14\}$$

$$D = \{3, 1, 4, 2\}; E = \{-1, 1\}; F = \{0, a\}$$

$$G = \{1, -1\}; A = \{0, 1\}$$

It can be seen that

$$8 \in A$$
, $8 \notin B$, $8 \notin D$, $8 \notin E$, $8 \notin F$, $8 \notin G$, $8 \notin H$

$$\Rightarrow$$
 A \neq B, A \neq D, A \neq E, A \neq F, A \neq G, A \neq H

Also,
$$2 \in A$$
, $2 \notin C$

$$3 \in B$$
, $3 \notin C$, $3 \notin E$, $3 \notin F$, $3 \notin G$, $3 \notin H$

$$\therefore$$
 B \neq C, B \neq E, B \neq F, B \neq G, B \neq H

$$12 \in C$$
, $12 \notin D$, $12 \notin E$, $12 \notin F$, $12 \notin G$, $12 \notin H$

$$\therefore$$
 C \neq D, C \neq E, C \neq F, C \neq G, C \neq H

$$4 \in D, 4 \notin E, 4 \notin F, 4 \notin G, 4 \notin H$$

$$\therefore$$
 D \neq E, D \neq F, D \neq G, D \neq H

Similarly,
$$E \neq F$$
, $E \neq G$, $E \neq H$

$$F \neq G, F \neq H, G \neq H$$

The order in which the elements of a set are listed is not significant.

$$\therefore$$
 B = D and E = G

Hence, among the given sets, B = D and E = G.

Class XI : Maths Chapter 1 : Sets

Questions and Solutions | Exercise 1.3 - NCERT Books

Question 1:

Make correct statements by filling in the symbols \subset or $\not\subset$ in the blank spaces:

- (i) {2, 3, 4} ... {1, 2, 3, 4, 5}
- (ii) {a, b, c} ... {b, c, d}
- (iii) $\{x: x \text{ is a student of Class XI of your school}\}$... $\{x: x \text{ student of your school}\}$
- (iv) $\{x: x \text{ is a circle in the plane}\}$... $\{x: x \text{ is a circle in the same plane with radius 1 unit}\}$
- (v) $\{x: x \text{ is a triangle in a plane}\}...\{x: x \text{ is a rectangle in the plane}\}$
- (vi) $\{x: x \text{ is an equilateral triangle in a plane}\}... <math>\{x: x \text{ is a triangle in the same plane}\}$
- (vii) $\{x: x \text{ is an even natural number}\} \dots \{x: x \text{ is an integer}\}$

Answer

- (i) $\{2,3,4\} \subset \{1,2,3,4,5\}$
- (ii) $\{a,b,c\} \not\subset \{b,c,d\}$
- (iii) $\{x: x \text{ is a student of class XI of your school}\}\subset \{x: x \text{ is student of your school}\}$
- (iv) $\{x: x \text{ is a circle in the plane}\} \notin \{x: x \text{ is a circle in the same plane with radius 1 unit}\}$
- (v) $\{x: x \text{ is a triangle in a plane}\} \notin \{x: x \text{ is a rectangle in the plane}\}$
- (vi) $\{x: x \text{ is an equilateral triangle in a plane}\}\subset \{x: x \text{ in a triangle in the same plane}\}$

(vii) $\{x: x \text{ is an even natural number}\} \subset \{x: x \text{ is an integer}\}$

Question 2:

Examine whether the following statements are true or false:

- (i) $\{a, b\} \not\subset \{b, c, a\}$
- (ii) $\{a, e\} \subset \{x: x \text{ is a vowel in the English alphabet}\}$
- (iii) $\{1, 2, 3\} \subset \{1, 3, 5\}$
- (iv) $\{a\} \subset \{a. b, c\}$
- (v) $\{a\} \in (a, b, c)$
- (vi) $\{x: x \text{ is an even natural number less than } 6\} \subset \{x: x \text{ is a natural number which divides } 36\}$

Answer

- (i) False. Each element of $\{a, b\}$ is also an element of $\{b, c, a\}$.
- (ii) True. a, e are two vowels of the English alphabet.
- (iii) False. $2 \in \{1, 2, 3\}$; however, $2 \notin \{1, 3, 5\}$
- (iv) True. Each element of $\{a\}$ is also an element of $\{a, b, c\}$.
- (v) False. The elements of $\{a, b, c\}$ are a, b, c. Therefore, $\{a\} \subset \{a, b, c\}$
- (vi) True. $\{x:x \text{ is an even natural number less than } 6\} = \{2, 4\}$

 $\{x:x \text{ is a natural number which divides 36}\}=\{1, 2, 3, 4, 6, 9, 12, 18, 36\}$

Question 3:

Let $A = \{1, 2, \{3, 4,\}, 5\}$. Which of the following statements are incorrect and why?

- **(i)** {3, 4}⊂ A
- (ii) {3, 4}}∈ A
- (iii) {{3, 4}}⊂ A
- **(iv)** 1∈ A
- (v) 1⊂ A
- (vi) $\{1, 2, 5\} \subset A$
- (vii) $\{1, 2, 5\} \in A$
- (viii) $\{1, 2, 3\} \subset A$
- (ix) $\Phi \in A$
- (x) $\Phi \subset A$

(xi) $\{\Phi\} \subset A$

Answer

 $A = \{1, 2, \{3, 4\}, 5\}$

- (i) The statement $\{3, 4\} \subset A$ is incorrect because $3 \in \{3, 4\}$; however, $3 \notin A$.
- (ii) The statement $\{3, 4\} \in A$ is correct because $\{3, 4\}$ is an element of A.
- (iii) The statement $\{\{3, 4\}\} \subset A$ is correct because $\{3, 4\} \in \{\{3, 4\}\}$ and $\{3, 4\} \in A$.
- (iv) The statement 1∈A is correct because 1 is an element of A.
- (v) The statement 1⊂ A is incorrect because an element of a set can never be a subset of itself.
- (vi) The statement $\{1, 2, 5\} \subset A$ is correct because each element of $\{1, 2, 5\}$ is also an element of A.
- (vii) The statement $\{1, 2, 5\} \in A$ is incorrect because $\{1, 2, 5\}$ is not an element of A.
- (viii) The statement $\{1, 2, 3\} \subset A$ is incorrect because $3 \in \{1, 2, 3\}$; however, $3 \notin A$.
- (ix) The statement $\Phi \in A$ is incorrect because Φ is not an element of A.
- (x) The statement $\Phi \subset A$ is correct because Φ is a subset of every set.
- (xi) The statement $\{\Phi\} \subset A$ is incorrect because $\Phi \in \{\Phi\}$; however, $\Phi \in A$.

Question 4:

Write down all the subsets of the following sets:

- (i) $\{a\}$
- (ii) $\{a, b\}$
- (iii) {1, 2, 3}
- (iv) Φ

Answer

- (i) The subsets of $\{a\}$ are Φ and $\{a\}$.
- (ii) The subsets of $\{a, b\}$ are Φ , $\{a\}$, $\{b\}$, and $\{a, b\}$.
- (iii) The subsets of $\{1, 2, 3\}$ are Φ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{2, 3\}$, $\{1, 3\}$, and $\{1, 2, 3\}$
- (iv) The only subset of Φ is Φ .

Question 5:

Write the following as intervals:

- (i) $\{x: x \in \mathbb{R}, -4 < x \le 6\}$
- (ii) $\{x: x \in \mathbb{R}, -12 < x < -10\}$
- (iii) $\{x: x \in \mathbb{R}, 0 \le x < 7\}$
- (iv) $\{x: x \in \mathbb{R}, 3 \le x \le 4\}$

Answer

- (i) $\{x: x \in \mathbb{R}, -4 < x \le 6\} = (-4, 6]$
- (ii) $\{x: x \in \mathbb{R}, -12 < x < -10\} = (-12, -10)$
- (iii) $\{x: x \in \mathbb{R}, 0 \le x < 7\} = [0, 7)$
- (iv) $\{x: x \in \mathbb{R}, 3 \le x \le 4\} = [3, 4]$

Question 6:

Write the following intervals in set-builder form:

- **(i)** (-3, 0)
- (ii) [6, 12]
- (iii) (6, 12]
- (iv) [-23, 5)

Answer

- (i) $(-3, 0) = \{x: x \in \mathbb{R}, -3 < x < 0\}$
- (ii) $[6, 12] = \{x: x \in \mathbb{R}, 6 \le x \le 12\}$
- (iii) $(6, 12] = \{x: x \in \mathbb{R}, 6 < x \le 12\}$
- (iv) $[-23, 5) = \{x: x \in \mathbb{R}, -23 \le x < 5\}$

Question 7:

What universal set (s) would you propose for each of the following:

- (i) The set of right triangles
- (ii) The set of isosceles triangles

Answer

- (i) For the set of right triangles, the universal set can be the set of triangles or the set of polygons.
- (ii) For the set of isosceles triangles, the universal set can be the set of triangles or the set of polygons or the set of two-dimensional figures.

Question 8:

Given the sets $A = \{1, 3, 5\}$, $B = \{2, 4, 6\}$ and $C = \{0, 2, 4, 6, 8\}$, which of the following may be considered as universals set (s) for all the three sets A, B and C

(ii) Φ

Answer

(i) It can be seen that $A \subset \{0, 1, 2, 3, 4, 5, 6\}$

$$B \subset \{0, 1, 2, 3, 4, 5, 6\}$$

However, $C \not\subset \{0, 1, 2, 3, 4, 5, 6\}$

Therefore, the set {0, 1, 2, 3, 4, 5, 6} cannot be the universal set for the sets A, B, and C.

(ii) $A \not\subset \Phi$, $B \not\subset \Phi$, $C \not\subset \Phi$

Therefore, Φ cannot be the universal set for the sets A, B, and C.

(iii)
$$A \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$B \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$C \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Therefore, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the universal set for the sets A, B, and C.

(iv)
$$A \subset \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$B \subset \{1, 2, 3, 4, 5, 6, 7, 8\}$$

However, $C \not\subset \{1, 2, 3, 4, 5, 6, 7, 8\}$

Class XI : Maths Chapter 1 : Sets

Questions and Solutions | Exercise 1.4 - NCERT Books

Question 1:

Find the union of each of the following pairs of sets:

(i)
$$X = \{1, 3, 5\} Y = \{1, 2, 3\}$$

(ii)
$$A = \{a, e, i, o, u\} B = \{a, b, c\}$$

(iii)
$$A = \{x: x \text{ is a natural number and multiple of 3}\}$$

 $B = \{x: x \text{ is a natural number less than 6}\}$

(iv)
$$A = \{x: x \text{ is a natural number and } 1 < x \le 6\}$$

B = $\{x: x \text{ is a natural number and } 6 < x < 10\}$

(v)
$$A = \{1, 2, 3\}, B = \Phi$$

Answer

(i)
$$X = \{1, 3, 5\} Y = \{1, 2, 3\}$$

$$X \cup Y = \{1, 2, 3, 5\}$$

(ii)
$$A = \{a, e, i, o, u\} B = \{a, b, c\}$$

127

$$A \cup B = \{a, b, c, e, i, o, u\}$$

(iii) $A = \{x: x \text{ is a natural number and multiple of 3}\} = \{3, 6, 9 ...\}$

As B = $\{x: x \text{ is a natural number less than 6}\} = \{1, 2, 3, 4, 5, 6\}$

$$A \cup B = \{1, 2, 4, 5, 3, 6, 9, 12 ...\}$$

 $A \cup B = \{x: x = 1, 2, 4, 5 \text{ or a multiple of 3}\}$

(iv) $A = \{x: x \text{ is a natural number and } 1 < x \le 6\} = \{2, 3, 4, 5, 6\}$

B = $\{x: x \text{ is a natural number and } 6 < x < 10\} = \{7, 8, 9\}$

$$A \cup B = \{2, 3, 4, 5, 6, 7, 8, 9\}$$

∴ A∪ B = $\{x: x \in \mathbb{N} \text{ and } 1 < x < 10\}$

(v)
$$A = \{1, 2, 3\}, B = \Phi$$

$$A \cup B = \{1, 2, 3\}$$

Question 2:

Let $A = \{a, b\}$, $B = \{a, b, c\}$. Is $A \subset B$? What is $A \cup B$?

Answer

Here, $A = \{a, b\}$ and $B = \{a, b, c\}$

Yes, $A \subset B$.

 $A \cup B = \{a, b, c\} = B$

Question 3:

If A and B are two sets such that $A \subset B$, then what is $A \cup B$?

Answer

If A and B are two sets such that $A \subset B$, then $A \cup B = B$.

Question 4:

If $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, $C = \{5, 6, 7, 8\}$ and $D = \{7, 8, 9, 10\}$; find

- (i) A ∪ B
- (ii) A ∪ C
- (iii) B ∪ C
- (iv) B ∪ D
- (v) A U B U C
- (vi) A ∪ B ∪ D

(vii) B U C U D

Answer

$$A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, C = \{5, 6, 7, 8\} \text{ and } D = \{7, 8, 9, 10\}$$

(i)
$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

(ii)
$$A \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

(iii)
$$B \cup C = \{3, 4, 5, 6, 7, 8\}$$

(iv)
$$B \cup D = \{3, 4, 5, 6, 7, 8, 9, 10\}$$

(v)
$$A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

(vi)
$$A \cup B \cup D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

(vii)
$$B \cup C \cup D = \{3, 4, 5, 6, 7, 8, 9, 10\}$$

Question 5:

Find the intersection of each pair of sets:

(i)
$$X = \{1, 3, 5\} Y = \{1, 2, 3\}$$

(ii)
$$A = \{a, e, i, o, u\} B = \{a, b, c\}$$

(iii)
$$A = \{x: x \text{ is a natural number and multiple of 3}\}$$

 $B = \{x: x \text{ is a natural number less than 6}\}$

(iv)
$$A = \{x: x \text{ is a natural number and } 1 < x \le 6\}$$

B = $\{x: x \text{ is a natural number and } 6 < x < 10\}$

(v)
$$A = \{1, 2, 3\}, B = \Phi$$

Answer

(i)
$$X = \{1, 3, 5\}, Y = \{1, 2, 3\}$$

$$X \cap Y = \{1, 3\}$$

(ii)
$$A = \{a, e, i, o, u\}, B = \{a, b, c\}$$

$$A \cap B = \{a\}$$

(iii)
$$A = \{x: x \text{ is a natural number and multiple of 3}\} = \{3, 6, 9 ...\}$$

 $B = \{x: x \text{ is a natural number less than 6}\} = \{1, 2, 3, 4, 5\}$

$$\therefore A \cap B = \{3\}$$

(iv)
$$A = \{x: x \text{ is a natural number and } 1 < x \le 6\} = \{2, 3, 4, 5, 6\}$$

B = $\{x: x \text{ is a natural number and } 6 < x < 10\} = \{7, 8, 9\}$

$$A \cap B = \Phi$$

(v)
$$A = \{1, 2, 3\}, B = \Phi$$

 $A \cap B = \Phi$

Question 6:

If $A = \{3, 5, 7, 9, 11\}$, $B = \{7, 9, 11, 13\}$, $C = \{11, 13, 15\}$ and $D = \{15, 17\}$; find

- **(i)** A ∩ B
- (ii) B ∩ C
- (iii) $A \cap C \cap D$
- (iv) A ∩ C
- **(v)** B ∩ D
- (vi) $A \cap (B \cup C)$
- **(vii)** A ∩ D
- **(viii)** A ∩ (B ∪ D)
- (ix) $(A \cap B) \cap (B \cup C)$
- (x) $(A \cup D) \cap (B \cup C)$

Answer

- (i) $A \cap B = \{7, 9, 11\}$
- (ii) $B \cap C = \{11, 13\}$
- (iii) $A \cap C \cap D = \{ A \cap C \} \cap D = \{11\} \cap \{15, 17\} = \Phi$
- (iv) $A \cap C = \{11\}$
- (v) $B \cap D = \Phi$
- (vi) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $= \{7, 9, 11\} \cup \{11\} = \{7, 9, 11\}$
- (vii) $A \cap D = \Phi$
- (viii) $A \cap (B \cup D) = (A \cap B) \cup (A \cap D)$
- $= \{7, 9, 11\} \cup \Phi = \{7, 9, 11\}$
- (ix) $(A \cap B) \cap (B \cup C) = \{7, 9, 11\} \cap \{7, 9, 11, 13, 15\} = \{7, 9, 11\}$
- (x) $(A \cup D) \cap (B \cup C) = \{3, 5, 7, 9, 11, 15, 17) \cap \{7, 9, 11, 13, 15\}$
- $= \{7, 9, 11, 15\}$

Question 7:

If $A = \{x: x \text{ is a natural number}\}$, $B = \{x: x \text{ is an even natural number}\}$

 $C = \{x: x \text{ is an odd natural number}\}\$ and $D = \{x: x \text{ is a prime number}\}\$, find

- **(i)** A ∩ B
- (ii) A ∩ C
- (iii) A ∩ D
- (iv) B ∩ C
- **(v)** B ∩ D
- **(vi)** C ∩ D

Answer

- $A = \{x: x \text{ is a natural number}\} = \{1, 2, 3, 4, 5 ...\}$
- B = $\{x: x \text{ is an even natural number}\} = \{2, 4, 6, 8 ...\}$
- $C = \{x: x \text{ is an odd natural number}\} = \{1, 3, 5, 7, 9 ...\}$
- $D = \{x: x \text{ is a prime number}\} = \{2, 3, 5, 7 ...\}$
- (i) $A \cap B = \{x: x \text{ is a even natural number}\} = B$
- (ii) $A \cap C = \{x: x \text{ is an odd natural number}\} = C$
- (iii) $A \cap D = \{x: x \text{ is a prime number}\} = D$
- (iv) $B \cap C = \Phi$
- (v) $B \cap D = \{2\}$
- (vi) $C \cap D = \{x: x \text{ is odd prime number}\}$

Question 8:

Which of the following pairs of sets are disjoint

- (i) $\{1, 2, 3, 4\}$ and $\{x: x \text{ is a natural number and } 4 \le x \le 6\}$
- (ii) {a, e, i, o, u}and {c, d, e, f}
- (iii) $\{x: x \text{ is an even integer}\}$ and $\{x: x \text{ is an odd integer}\}$

Answer

 $\{x: x \text{ is a natural number and } 4 \le x \le 6\} = \{4, 5, 6\}$

Now,
$$\{1, 2, 3, 4\} \cap \{4, 5, 6\} = \{4\}$$

Therefore, this pair of sets is not disjoint.

(ii)
$$\{a, e, i, o, u\} \cap (c, d, e, f\} = \{e\}$$

Therefore, $\{a, e, i, o, u\}$ and (c, d, e, f) are not disjoint.

(iii) $\{x: x \text{ is an even integer}\} \cap \{x: x \text{ is an odd integer}\} = \Phi$

Therefore, this pair of sets is disjoint.

261

Question 9:

If $A = \{3, 6, 9, 12, 15, 18, 21\}, B = \{4, 8, 12, 16, 20\},\$

 $C = \{2, 4, 6, 8, 10, 12, 14, 16\}, D = \{5, 10, 15, 20\}; find$

- (i) A B
- (ii) A C
- (iii) A D
- (iv) B A
- (v) C A
- (vi) D A
- (vii) B C
- (viii) B D
- (ix) C B
- **(x)** D B
- (xi) C D
- (xii) D C

Answer

(i) $A - B = \{3, 6, 9, 15, 18, 21\}$

(ii)
$$A - C = \{3, 9, 15, 18, 21\}$$

(iii)
$$A - D = \{3, 6, 9, 12, 18, 21\}$$

(iv)
$$B - A = \{4, 8, 16, 20\}$$

(v)
$$C - A = \{2, 4, 8, 10, 14, 16\}$$

(vi)
$$D - A = \{5, 10, 20\}$$

(vii)
$$B - C = \{20\}$$

(viii)
$$B - D = \{4, 8, 12, 16\}$$

(ix)
$$C - B = \{2, 6, 10, 14\}$$

(x) D - B =
$$\{5, 10, 15\}$$

(xi)
$$C - D = \{2, 4, 6, 8, 12, 14, 16\}$$

(xii) D - C =
$$\{5, 15, 20\}$$

Question 10:

If $X = \{a, b, c, d\}$ and $Y = \{f, b, d, g\}$, find

- (i) X Y
- (ii) Y X
- **(iii)** X ∩ Y

Answer

(i)
$$X - Y = \{a, c\}$$

(ii)
$$Y - X = \{f, g\}$$

(iii)
$$X \cap Y = \{b, d\}$$

Question 11:

If **R** is the set of real numbers and **Q** is the set of rational numbers, then what is **R** – **Q**?

Answer

R: set of real numbers

Q: set of rational numbers

Therefore, R - Q is a set of irrational numbers.

Question 12:

State whether each of the following statement is true or false. Justify your answer.

- (i) {2, 3, 4, 5} and {3, 6} are disjoint sets.
- (ii) $\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.
- (iii) {2, 6, 10, 14} and {3, 7, 11, 15} are disjoint sets.
- (iv) {2, 6, 10} and {3, 7, 11} are disjoint sets.

Answer

(i) False

As
$$3 \in \{2, 3, 4, 5\}, 3 \in \{3, 6\}$$

$$\Rightarrow$$
 {2, 3, 4, 5} \cap {3, 6} = {3}

(ii) False

As
$$a \in \{a, e, i, o, u\}, a \in \{a, b, c, d\}$$

$$\Rightarrow$$
 {a, e, i, o, u} \cap {a, b, c, d} = {a}

(iii) True

As
$$\{2, 6, 10, 14\} \cap \{3, 7, 11, 15\} = \Phi$$

(iv) True

As
$$\{2, 6, 10\} \cap \{3, 7, 11\} = \Phi$$

Class XI: Maths Chapter 1 : Sets

Questions and Solutions | Exercise 1.5 - NCERT Books

Question 1:

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$ and $C = \{3, 4, 5, 6, 7, 8, 9\}$.

- 6}. Find
- (i) A'
- (ii) B'
- (iii) (A∪C)′
- (iv) $(A \cup B)'$
- (v) (A')'
- (vi) (B-C)

Answer

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

- $A = \{1, 2, 3, 4\}$
- $B = \{2, 4, 6, 8\}$
- $C = \{3, 4, 5, 6\}$
- (i) $A' = \{5, 6, 7, 8, 9\}$
- (ii) $B' = \{1, 3, 5, 7, 9\}$
- (iii) $A \cup C = \{1, 2, 3, 4, 5, 6\}$ $\therefore (A \cup C)' = \{7,8,9\}$
- (iv) $A \cup B = \{1, 2, 3, 4, 6, 8\}$ $(A \cup B)' = \{5,7,9\}$

(v)
$$(A')' = A = \{1, 2, 3, 4\}$$

(vi) $B-C=\{2,8\}$ $\therefore (B-C)' = \{1,3,4,5,6,7,9\}$

Question 2:

If $U = \{a, b, c, d, e, f, g, h\}$, find the complements of the following sets:

- (i) $A = \{a, b, c\}$
- (ii) $B = \{d, e, f, g\}$
- (iii) $C = \{a, c, e, g\}$
- (iv) $D = \{f, g, h, a\}$

Answer

$$U = \{a, b, c, d, e, f, g, h\}$$

(i) $A = \{a, b, c\}$

$$A' = \{d, e, f, g, h\}$$

(ii) $B = \{d, e, f, g\}$

$$\therefore \mathbf{B'} = \{a, b, c, h\}$$

(iii) $C = \{a, c, e, g\}$

$$\therefore C' = \{b, d, f, h\}$$

(iv)
$$D = \{f, g, h, a\}$$

:. D' =
$$\{b, c, d, e\}$$

Question 3:

Taking the set of natural numbers as the universal set, write down the complements of the following sets:

- (i) {x: x is an even natural number}
- (ii) {x: x is an odd natural number}
- (iii) {x: x is a positive multiple of 3}
- (iv) {x: x is a prime number}
- (v) $\{x: x \text{ is a natural number divisible by 3 and 5}\}$
- (vi) {x: x is a perfect square}
- (vii) {x: x is perfect cube}
- (viii) $\{x: x + 5 = 8\}$
- (ix) $\{x: 2x + 5 = 9\}$
- (x) $\{x: x \ge 7\}$
- (xi) $\{x: x \in \mathbb{N} \text{ and } 2x + 1 > 10\}$

Answer

U = N: Set of natural numbers

(i) $\{x: x \text{ is an even natural number}\}' = \{x: x \text{ is an odd natural number}\}$

- (ii) $\{x: x \text{ is an odd natural number}\}' = \{x: x \text{ is an even natural number}\}$
- (iii) $\{x: x \text{ is a positive multiple of 3}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a multiple of 3}\}$
- (iv) $\{x: x \text{ is a prime number}\}' = \{x: x \text{ is a positive composite number and } x = 1\}$
- (v) $\{x: x \text{ is a natural number divisible by 3 and 5}\}' = \{x: x \text{ is a natural number that is not divisible by 3 or 5}\}$
- (vi) $\{x: x \text{ is a perfect square}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a perfect square}\}$
- (vii) $\{x: x \text{ is a perfect cube}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a perfect cube}\}$
- (viii) $\{x: x + 5 = 8\}' = \{x: x \in \mathbb{N} \text{ and } x \neq 3\}$
- (ix) $\{x: 2x + 5 = 9\}' = \{x: x \in \mathbb{N} \text{ and } x \neq 2\}$
- (x) $\{x: x \ge 7\}' = \{x: x \in \mathbb{N} \text{ and } x < 7\}$
- (xi) $\{x: x \in \mathbb{N} \text{ and } 2x + 1 > 10\}' = \{x: x \in \mathbb{N} \text{ and } x \le 9/2\}$

Question 4:

If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{2, 4, 6, 8\}$ and $B = \{2, 3, 5, 7\}$. Verify that

(i)
$$(A \cup B)' = A' \cap B'$$
 (ii) $(A \cap B)' = A' \cup B'$

Answer

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$A = \{2, 4, 6, 8\}, B = \{2, 3, 5, 7\}$$

(i)

$$(A \cup B)' = \{2, 3, 4, 5, 6, 7, 8\}' = \{1, 9\}$$

$$A' \cap B' = \{1, 3, 5, 7, 9\} \cap (1, 4, 6, 8, 9) = \{1, 9\}$$

$$(A \cup B)' = A' \cap B'$$

(ii)

$$(A \cap B)' = \{2\}' = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

$$A' \cup B' = \{1, 3, 5, 7, 9\} \cup \{1, 4, 6, 8, 9\} = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

$$\therefore (A \cap B)' = A' \cup B'$$

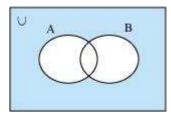
Question 5:

Draw appropriate Venn diagram for each of the following:

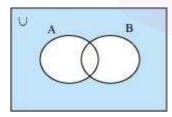
- (i) $\left(A \cup B\right)'$
- (ii) $A' \cap B'$
- (iii) $(A \cap B)'$
- (iv) $A' \cup B'$

Answer

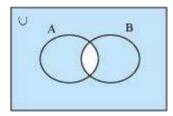
(i) $(A \cup B)'$



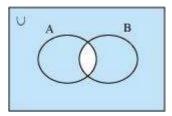
(ii) $A' \cap B'$



(iii) $(A \cap B)'$



(iv) $A' \cup B'$



Question 6:

Let U be the set of all triangles in a plane. If A is the set of all triangles with at least one angle different from 60° , what is A'?

Answer

A' is the set of all equilateral triangles.

Question 7:

Fill in the blanks to make each of the following a true statement:

(i)
$$A \cup A' = ...$$

(ii)
$$\Phi' \cap A = \dots$$

(iii)
$$A \cap A' = ...$$

(iv)
$$U' \cap A = ...$$

Answer

(i)
$$A \cup A' = U$$

(ii)
$$\Phi' \cap A = U \cap A = A$$

$$: \Phi' \cap A = A$$

(iii)
$$A \cap A' = \Phi$$

(iv)
$$U' \cap A = \Phi \cap A = \Phi$$

$$:: \mathsf{U}' \cap \mathsf{A} = \mathsf{\Phi}$$

Class XI : Maths Chapter 1 : Sets

Questions and Solutions | Miscellaneous Exercise 1 - NCERT Books

Question 1:

Decide, among the following sets, which sets are subsets of one and another:

$$A = \{x: x \in R \text{ and } x \text{ satisfy } x^2 - 8x + 12 = 0\},\$$

$$B = \{2, 4, 6\}, C = \{2, 4, 6, 8...\}, D = \{6\}.$$

Answer

A =
$$\{x: x \in \mathbb{R} \text{ and } x \text{ satisfies } x^2 - 8x + 12 = 0\}$$

2 and 6 are the only solutions of $x^2 - 8x + 12 = 0$.

$$A = \{2, 6\}$$

$$B = \{2, 4, 6\}, C = \{2, 4, 6, 8 ...\}, D = \{6\}$$

$$\therefore D \subset A \subset B \subset C$$

Hence, $A \subset B$, $A \subset C$, $B \subset C$, $D \subset A$, $D \subset B$, $D \subset C$

Question 2:

In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

- (i) If $x \in A$ and $A \in B$, then $x \in B$
- (ii) If $A \subset B$ and $B \in C$, then $A \in C$
- (iii) If $A \subset B$ and $B \subset C$, then $A \subset C$
- (iv) If $A \not\subset B$ and $B \not\subset C$, then $A \not\subset C$
- (v) If $x \in A$ and $A \not\subset B$, then $x \in B$
- (vi) If $A \subset B$ and $x \notin B$, then $x \notin A$

Answer

(i) False

Let
$$A = \{1, 2\}$$
 and $B = \{1, \{1, 2\}, \{3\}\}$

Now,
$$2 \in \{1, 2\}$$
 and $\{1, 2\} \in \{\{3\}, 1, \{1, 2\}\}$

 $A \in B$

However,
$$2 \notin \{\{3\}, 1, \{1, 2\}\}$$

(ii) False

Let
$$A = \{2\}$$
, $B = \{0, 2\}$, and $C = \{1, \{0, 2\}, 3\}$

As $A \subset B$

 $B \in C$

However, A ∉ C

(iii) True

Let $A \subset B$ and $B \subset C$.

Let $x \in A$

$$\Rightarrow x \in B$$
 $[\because A \subset B]$

$$\Rightarrow x \in \mathbb{C} \qquad \left[\because \ \mathbf{B} \subset \mathbb{C} \right]$$

 $A \subset C$

(iv) False

Let
$$A = \{1, 2\}$$
, $B = \{0, 6, 8\}$, and $C = \{0, 1, 2, 6, 9\}$

Accordingly, $A \not\subset B_{and} \ B \not\subset C$

However, $A \subset C$

(v) False

Let
$$A = \{3, 5, 7\}$$
 and $B = \{3, 4, 6\}$

Now, $5 \in A$ and $A \not\subset B$

However, 5 ∉ B

(vi) True

Let $A \subset B$ and $x \notin B$.

To show: $x \notin A$

If possible, suppose $x \in A$.

Then, $x \in B$, which is a contradiction as $x \notin B$

∴x ∉ A

Question 3:

Let A, B and C be the sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. show that B = C.

Answer

Let, A, B and C be the sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$.

To show: B = C

Let $x \in B$

$$\Rightarrow x \in A \cup B$$
 $[B \subset A \cup B]$

$$\Rightarrow x \in A \cup C$$
 $[A \cup B = A \cup C]$

$$\Rightarrow x \in A \text{ or } x \in C$$

Case I

 $x \in A$

Also, $x \in B$

 $x \in A \cap B$

$$\Rightarrow x \in A \cap C \quad [:: A \cap B = A \cap C]$$

 $x \in A$ and $x \in C$

 $x \in C$

 $: B \subset C$

Similarly, we can show that $C \subset B$.

Question 4:

Show that the following four conditions are equivalent:

(i)
$$A \subset B$$
 (ii) $A - B = \Phi$

(iii)
$$A \cup B = B$$
 (iv) $A \cap B = A$

Answer

First, we have to show that (i) \Leftrightarrow (ii).

Let A ⊂ B

To show: $A - B \neq \Phi$

If possible, suppose A – B $\neq \Phi$

This means that there exists $x \in A$, $x \ne B$, which is not possible as $A \subset B$.

$$\therefore A - B = \Phi$$

$$: A \subset B \Rightarrow A - B = \Phi$$

Let $A - B = \Phi$

To show: $A \subset B$

Let $x \in A$

Clearly, $x \in B$ because if $x \notin B$, then $A - B \neq \Phi$

$$\therefore A - B = \Phi \Rightarrow A \subset B$$

: (i) ⇔ (ii)

Let $A \subset B$

To show: $A \cup B = B$

Clearly, $B \subset A \cup B$

Let $x \in A \cup B$

 $\Rightarrow x \in A \text{ or } x \in B$

Case I: $x \in A$

 $[\because A \subset B]$ $\Rightarrow x \in B$

 $A \cup B \subset B$

Case II: $x \in B$

Then, $A \cup B = B$

Conversely, let $A \cup B = B$

Let $x \in A$

 $\Rightarrow x \in A \cup B$

 $[::A\subset A\cup B]$

 $\Rightarrow x \in B$

 $[:: A \cup B = B]$

 $\therefore A \subset B$

Hence, (i) ⇔ (iii)

Now, we have to show that (i) \Leftrightarrow (iv).

Let $A \subset B$

Clearly $A \cap B \subset A$

Let $x \in A$

We have to show that $x \in A \cap B$

As $A \subset B$, $x \in B$

 $x \in A \cap B$

 $A \subset A \cap B$

Hence, $A = A \cap B$

Conversely, suppose $A \cap B = A$

Let $x \in A$

 $\Rightarrow x \in A \cap B$

- $\Rightarrow x \in A \text{ and } x \in B$
- $\Rightarrow x \in B$
- $:: \mathsf{A} \subset \mathsf{B}$

Hence, (i) \Leftrightarrow (iv).

Question 5:

Show that if $A \subset B$, then $C - B \subset C - A$.

Answer

Let $A \subset B$

To show: $C - B \subset C - A$

Let $x \in C - B$

 $\Rightarrow x \in C \text{ and } x \notin B$

 $\Rightarrow x \in C \text{ and } x \notin A [A \subset B]$

 $\Rightarrow x \in C - A$

 \therefore C - B \subset C - A

Answer False Let $A = \{0, 1\}$ and B =

 $\{0, 1\}\} P(B) = \{ , \{1\}, \{2\}, \{1, 2\}\} P(A B) =$

 $\{ \ , \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, \{0, 1, 2\} \}$

P(A) $P(B) = { , {0}, {1}, {0, 1}, {2}, {1, 2}}$

P(A) P(B) P(A B)

Question 6:

Show that for any sets A and B,

$$A = (A \cap B) \cup (A - B)$$
 and $A \cup (B - A) = (A \cup B)$

Answer

To show: $A = (A \cap B) \cup (A - B)$

Let $x \in A$

We have to show that $x \in (A \cap B) \cup (A - B)$

Case I

 $x \in A \cap B$

Then, $x \in (A \cap B) \subset (A \cup B) \cup (A - B)$

Case II

 $x \notin A \cap B$

 $\Rightarrow x \notin A \text{ or } x \notin B$

 $\therefore x \notin B [x \notin A]$

 $\therefore x \notin A - B \subset (A \cup B) \cup (A - B)$

 $\therefore A \subset (A \cap B) \cup (A - B) \dots (1)$

It is clear that

 $A \cap B \subset A$ and $(A - B) \subset A$

 \therefore (A \cap B) \cup (A - B) \subset A ... (2)

From (1) and (2), we obtain

 $A = (A \cap B) \cup (A - B)$

To prove: $A \cup (B - A) \subset A \cup B$

374

Let $x \in A \cup (B - A)$

 $\Rightarrow x \in A \text{ or } x \in (B - A)$

 $\Rightarrow x \in A \text{ or } (x \in B \text{ and } x \notin A)$

 \Rightarrow ($x \in A \text{ or } x \in B$) and ($x \in A \text{ or } x \notin A$)

 $\Rightarrow x \in (A \cup B)$

 $\therefore A \cup (B - A) \subset (A \cup B) \dots (3)$

Next, we show that $(A \cup B) \subset A \cup (B - A)$.

Let $y \in A \cup B$

 $\Rightarrow y \in A \text{ or } y \in B$

 \Rightarrow ($y \in A \text{ or } y \in B$) and ($y \in A \text{ or } y \notin A$)

 $\Rightarrow y \in A \text{ or } (y \in B \text{ and } y \notin A)$

 $\Rightarrow y \in A \cup (B - A)$

 $\therefore A \cup B \subset A \cup (B - A) \dots (4)$

Hence, from (3) and (4), we obtain $A \cup (B - A) = A \cup B$.

Question 7:

Using properties of sets show that

(i)
$$A \cup (A \cap B) = A$$
 (ii) $A \cap (A \cup B) = A$.

(i) To show: $A \cup (A \cap B) = A$

We know that

 $A \subset A$

 $A \cap B \subset A$

 $\therefore A \cup (A \cap B) \subset A \dots (1)$

Also, $A \subset A \cup (A \cap B) \dots (2)$

 \therefore From (1) and (2), $A \cup (A \cap B) = A$

(ii) To show: $A \cap (A \cup B) = A$

 $A \cap (A \cup B) = (A \cap A) \cup (A \cap B)$

 $= A \cup (A \cap B)$

 $= A \{from (1)\}$

Question 8:

Show that $A \cap B = A \cap C$ need not imply B = C.

Answer

Let
$$A = \{0, 1\}, B = \{0, 2, 3\}, and C = \{0, 4, 5\}$$

Accordingly,
$$A \cap B = \{0\}$$
 and $A \cap C = \{0\}$

Here,
$$A \cap B = A \cap C = \{0\}$$

However, $B \neq C$ [2 \in B and 2 \notin C]

Question 9:

Let A and B be sets. If $A \cap X = B \cap X = \Phi$ and $A \cup X = B \cup X$ for some set X, show that A = B.

(Hints $A = A \cap (A \cup X)$, $B = B \cap (B \cup X)$ and use distributive law)

Answer

Let A and B be two sets such that $A \cap X = B \cap X = f$ and $A \cup X = B \cup X$ for some set X.

To show: A = B

It can be seen that

$$A = A \cap (A \cup X) = A \cap (B \cup X) [A \cup X = B \cup X]$$

$$= (A \cap B) \cup (A \cap X)$$
 [Distributive law]

$$= (A \cap B) \cup \Phi [A \cap X = \Phi]$$

$$= A \cap B \dots (1)$$

Now,
$$B = B \cap (B \cup X)$$

$$= B \cap (A \cup X) [A \cup X = B \cup X]$$

=
$$(B \cap A) \cup (B \cap X)$$
 [Distributive law]

$$= (B \cap A) \cup \Phi [B \cap X = \Phi]$$

$$= B \cap A$$

$$= A \cap B \dots (2)$$

Hence, from (1) and (2), we obtain A = B.

Question 10:

Find sets A, B and C such that A \cap B, B \cap C and A \cap C are non-empty sets and A \cap B \cap C = Φ .

Answer

Let
$$A = \{0, 1\}, B = \{1, 2\}, and C = \{2, 0\}.$$

Accordingly,
$$A \cap B = \{1\}$$
, $B \cap C = \{2\}$, and $A \cap C = \{0\}$.

 \therefore A \cap B, B \cap C, and A \cap C are non-empty.

However, $A \cap B \cap C = \Phi$