Class XI : Maths
Chapter 13 : Statistics

Questions and Solutions | Exercise 13.1 - NCERT Books

Question 1:

Find the mean deviation about the mean for the data
$4,7,8,9,10,12,13,17$
Answer
The given data is
$4,7,8,9,10,12,13,17$
Mean of the data, $\quad \bar{x}=\frac{4+7+8+9+10+12+13+17}{8}=\frac{80}{8}=10$
The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$, are
$-6,-3,-2,-1,0,2,3,7$
The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
6, 3, 2, 1, 0, 2, 3, 7
The required mean deviation about the mean is
M.D. $(\bar{x})=\frac{\sum_{i=1}^{8}\left|x_{i}-\bar{x}\right|}{8}=\frac{6+3+2+1+0+2+3+7}{8}=\frac{24}{8}=3$

Question 2:

Find the mean deviation about the mean for the data
$38,70,48,40,42,55,63,46,54,44$

Answer

The given data is
$38,70,48,40,42,55,63,46,54,44$
Mean of the given data,

$$
\bar{x}=\frac{38+70+48+40+42+55+63+46+54+44}{10}=\frac{500}{10}=50
$$

The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$, are $-12,20,-2,-10,-8,5,13,-4,4,-6$

The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are $12,20,2,10,8,5,13,4,4,6$

The required mean deviation about the mean is

$$
\begin{aligned}
\text { M.D. }(\bar{x}) & =\frac{\sum_{i=1}^{10}\left|x_{i}-\bar{x}\right|}{10} \\
& =\frac{12+20+2+10+8+5+13+4+4+6}{10} \\
& =\frac{84}{10} \\
& =8.4
\end{aligned}
$$

Question 3:

Find the mean deviation about the median for the data.
$13,17,16,14,11,13,10,16,11,18,12,17$

Answer

The given data is
$13,17,16,14,11,13,10,16,11,18,12,17$
Here, the numbers of observations are 12 , which is even.
Arranging the data in ascending order, we obtain
$10,11,11,12,13,13,14,16,16,17,17,18$
Median, $\mathrm{M}=\frac{\left(\frac{12}{2}\right)^{\text {t/ }} \text { observation }+\left(\frac{12}{2}+1\right)^{\text {t/ }} \text { observation }}{2}$

$$
=\frac{6^{\text {th }} \text { observation }+7^{\text {th }} \text { observation }}{2}
$$

$$
=\frac{13+14}{2}=\frac{27}{2}=13.5
$$

The deviations of the respective observations from the median, i.e. $x_{i}-\mathrm{M}$, are $-3.5,-2.5,-2.5,-1.5,-0.5,-0.5,0.5,2.5,2.5,3.5,3.5,4.5$
The absolute values of the deviations, $\left|x_{i}-\mathrm{M}\right|$, are
$3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$
The required mean deviation about the median is

$$
\begin{aligned}
\text { M.D. }(\mathrm{M}) & =\frac{\sum_{i=1}^{12}\left|x_{i}-\mathrm{M}\right|}{12} \\
& =\frac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12} \\
& =\frac{28}{12}=2.33
\end{aligned}
$$

Question 4:

Find the mean deviation about the median for the data
$36,72,46,42,60,45,53,46,51,49$
Answer
The given data is
$36,72,46,42,60,45,53,46,51,49$
Here, the number of observations is 10 , which is even.
Arranging the data in ascending order, we obtain
$36,42,45,46,46,49,51,53,60,72$
Median $\mathrm{M}=\frac{\left(\frac{10}{2}\right)^{\text {th }} \text { observation }+\left(\frac{10}{2}+1\right)^{\text {th }} \text { observation }}{2}$

$$
\begin{aligned}
& =\frac{5^{\text {th }} \text { observation }+6^{\text {th }} \text { observation }}{2} \\
& =\frac{46+49}{2}=\frac{95}{2}=47.5
\end{aligned}
$$

The deviations of the respective observations from the median, i.e. $x_{i}-\mathrm{M}$, are $-11.5,-5.5,-2.5,-1.5,-1.5,1.5,3.5,5.5,12.5,24.5$
The absolute values of the deviations, $\left|x_{i}-\mathrm{M}\right|$, are
$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$
Thus, the required mean deviation about the median is

$$
\begin{aligned}
\text { M.D. }(\mathrm{M}) & =\frac{\sum_{i=1}^{10}\left|x_{i}-\mathrm{M}\right|}{10}=\frac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10} \\
& =\frac{70}{10}=7
\end{aligned}
$$

Question 5:

Find the mean deviation about the mean for the data.

x_{i}	5	10	15	20	25
f_{i}	7	4	6	3	5

Answer

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		158

$$
\mathrm{N}=\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}=25
$$

$$
\begin{aligned}
& \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=350 \\
& \therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{25} \times 350=14 \\
& \therefore \mathrm{MD}(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{25} \times 158=6.32
\end{aligned}
$$

Question 6:

Find the mean deviation about the mean for the data

x_{i}	10	30	50	70	90
f_{i}	4	24	28	16	8

Answer

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

$$
\begin{aligned}
& \mathrm{N}=\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}=80, \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=4000 \\
& \therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{80} \times 4000=50 \\
& \operatorname{MD}(\overline{\mathrm{x}}) \frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{80} \times 1280=16
\end{aligned}
$$

Question 7:

Find the mean deviation about the median for the data.

$\boldsymbol{x}_{\boldsymbol{i}}$	5	7	9	10	12	15
$\boldsymbol{f}_{\boldsymbol{i}}$	8	6	2	2	2	6

Answer
The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	c.f.
5	8	8
7	6	14
9	2	16
10	2	18
12	2	20
15	6	26

Here, $N=26$, which is even.
Median is the mean of $13^{\text {th }}$ and $14^{\text {th }}$ observations. Both of these observations lie in the cumulative frequency 14 , for which the corresponding observation is 7 .
\therefore Median $=\frac{13^{\text {th }} \text { observation }+14^{\text {th }} \text { observation }}{2}=\frac{7+7}{2}=7$

The absolute values of the deviations from median, i.e. $\left|x_{i}-\mathrm{M}\right|$, are

$\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$	2	0	2	3	5	8
$\boldsymbol{f}_{\boldsymbol{i}}$	8	6	2	2	2	6
$\boldsymbol{f}_{\boldsymbol{i}}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$						

$\sum_{i=1}^{6} f_{i}=26$ and $\sum_{i=1}^{6} f_{i}\left|x_{i}-\mathrm{M}\right|=84$
M.D.(M) $=\frac{1}{\mathrm{~N}} \sum_{i=1}^{6} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{26} \times 84=3.23$

Question 8:

Find the mean deviation about the median for the data

$\boldsymbol{x}_{\boldsymbol{i}}$	15	21	27	30	35
$\boldsymbol{f}_{\boldsymbol{i}}$	3	5	6	7	8

Answer
The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	c.f.
15	3	3
21	5	8
27	6	14
30	7	21
35	8	29

Here, $\mathrm{N}=29$, which is odd.
\therefore Median $=\left(\frac{29+1}{2}\right)^{\text {th }}$ observation $=15^{\text {th }}$ observation
This observation lies in the cumulative frequency 21 , for which the corresponding observation is 30 .
\therefore Median $=30$
The absolute values of the deviations from median, i.e. $\left|x_{i}-\mathrm{M}\right|$, are

$\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$	15	9	3	0	5
$\boldsymbol{f}_{\boldsymbol{i}}$	3	5	6	7	8
$\boldsymbol{f}_{\boldsymbol{i}}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$	45	45	18	0	40

$\sum_{i=1}^{5} f_{i}=29, \sum_{i=1}^{5} f_{i}\left|x_{i}-\mathbf{M}\right|=148$
$\therefore \quad$ M.D.(M) $=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} f_{i}\left|x_{i}-\mathbf{M}\right|=\frac{1}{29} \times 148=5.1$

Question 9:

Find the mean deviation about the mean for the data.

Income per day	Number of persons
$0-100$	4
$100-200$	8
$200-300$	9
$300-400$	7
$400-500$	5
$500-600$	4
$600-700$	

Answer
The following table is formed.

Income per day	Number of persons $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point \boldsymbol{x}_{i}	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$
0-100	4	50	200	308	1232
100-200	8	150	1200	208	1664
200-300	9	250	2250	108	972
300-400	10	350	3500	8	80
400-500	7	450	3150	92	644
500-600	5	550	2750	192	960
600-700	4	650	2600	292	1168
700-800	3	750	2250	392	1176
	50		17900		7896

Here, $\quad \mathrm{N}=\sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}}=50, \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=17900$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{50} \times 17900=358$
M.D. $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{50} \times 7896=157.92$

Question 10:

Find the mean deviation about the mean for the data

Height in cms	Number of boys

$95-105$	9
$105-115$	13
$115-125$	26
$125-135$	30
$135-145$	10
$145-155$	

Answer
The following table is formed.

Height in cms	Number of boys $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right\|$
$95-105$	9	100	900	25.3	227.7
$105-115$	13	110	1430	15.3	198.9
$115-125$	26	120	3120	5.3	137.8
$125-135$	12	140	1680	14.7	176.4
$135-145$	10	150	1500	24.7	247
$145-155$				4900	4.7

$N=\sum_{i=1}^{6} f_{i}=100, \sum_{i=1}^{6} f_{i} x_{i}=12530$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{100} \times 12530=125.3$
M.D. $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{100} \times 1128.8=11.28$

Question 11:

Find the mean deviation about median for the following data:

Marks	Number of girls
$0-10$	6
$10-20$	8
$20-30$	14
$30-40$	16
$40-50$	2
$50-60$	2

Answer
The following table is formed.

Marks	Number of boys $\boldsymbol{f}_{\boldsymbol{i}}$	Cumulative frequency (c.f.)	Mid- point $\boldsymbol{x}_{\boldsymbol{i}}$	$\mid \boldsymbol{x}_{\boldsymbol{i}}-$ Med. \mid	$\boldsymbol{f}_{\boldsymbol{i}} \mid \boldsymbol{x}_{\boldsymbol{i}}-$ Med. \mid
$0-10$	6	6	5	22.85	137.1
$10-20$	8	14	15	12.85	102.8
$20-30$	14	28	25	2.85	39.9
$30-40$	16	48	35	7.15	114.4
$40-50$	4	50	55	27.15	54.3
$50-60$	2			17.15	68.6
	50				

The class interval containing the $\left(\frac{\mathrm{N}}{2}\right)^{t h}$ or $25^{\text {th }}$ item is $20-30$.
Therefore, $20-30$ is the median class.
It is known that,

Median $=l+\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{f} \times h$
Here, $I=20, \mathrm{C}=14, f=14, h=10$, and $\mathrm{N}=50$
\therefore Median $=20+\frac{25-14}{14} \times 10=20+\frac{110}{14}=20+7.85=27.85$
Thus, mean deviation about the median is given by,

$$
\text { M.D. }(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{6} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{50} \times 517.1=10.34
$$

Question 12:

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age	Number
$16-20$	5
$21-25$	6
$26-30$	12
$31-35$	14
$36-40$	26
$41-45$	12
$46-50$	16
$51-55$	9

Answer
The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.

The table is formed as follows.

Age	Number $\boldsymbol{f}_{\boldsymbol{i}}$	Cumulative frequency (c.f.)	Midpoint $\boldsymbol{x}_{\boldsymbol{i}}$	$\begin{gathered} \mid x_{i}- \\ \text { Med. } \mid \end{gathered}$	$\boldsymbol{f}_{\boldsymbol{i}} \mid \boldsymbol{x}_{\boldsymbol{i}}-$ Med. \|
$\begin{gathered} 15.5- \\ 20.5 \end{gathered}$	5	5	18	20	100
$\begin{gathered} 20.5- \\ 25.5 \end{gathered}$	6	11	23	15	90
$\begin{gathered} 25.5- \\ 30.5 \end{gathered}$	12	23	28	10	120
$\begin{gathered} 30.5- \\ 35.5 \end{gathered}$	14	37	33	5	70
$\begin{gathered} 35.5- \\ 40.5 \end{gathered}$	26	63	38	0	0
$\begin{gathered} 40.5- \\ 45.5 \end{gathered}$	12	75	43	5	60
45.5- 50.5	16	91	48	10	160
$\begin{gathered} 50.5- \\ 55.5 \end{gathered}$	9	100	53	15	135
	100				735

The class interval containing the $\overline{2}$ or $50^{\text {th }}$ item is $35.5-40.5$.
Therefore, $35.5-40.5$ is the median class.
It is known that,
Median $=l+\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{f} \times h$

Here, $l=35.5, \mathrm{C}=37, f=26, h=5$, and $\mathrm{N}=100$
\therefore Median $=35.5+\frac{50-37}{26} \times 5=35.5+\frac{13 \times 5}{26}=35.5+2.5=38$
Thus, mean deviation about the median is given by,

$$
\text { M.D. }(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{8} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{100} \times 735=7.35
$$

Class XI : Maths
Chapter 13 : Statistics

Questions and Solutions | Exercise 13.2 - NCERT Books

Question 1:

Find the mean and variance for the data $6,7,10,12,13,4,8,12$
Answer
$6,7,10,12,13,4,8,12$
Mean, $\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{8} \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$
The following table is obtained.

x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
6	-3	9
7	-2	4
10	-1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9
		74

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{8}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{8} \times 74=9.25$

Question 2:

Find the mean and variance for the first n natural numbers
Answer
The mean of first n natural numbers is calculated as follows.
Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$

$$
\begin{aligned}
\therefore \text { Mean }= & \frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2} \\
\text { Variance }\left(\sigma^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[x_{i}-\left(\frac{n+1}{2}\right)\right]^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n} \sum_{i=1}^{n} 2\left(\frac{n+1}{2}\right) x_{i}+\frac{1}{n} \sum_{i=1}^{n}\left(\frac{n+1}{2}\right)^{2} \\
& =\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\left(\frac{n+1}{n}\right)\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n \\
& =\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4} \\
& =\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4} \\
& =(n+1)\left[\frac{4 n+2-3 n-3}{12}\right] \\
& =\frac{(n+1)(n-1)}{12} \\
& =\frac{n^{2}-1}{12}
\end{aligned}
$$

Question 3:

Find the mean and variance for the first 10 multiples of 3
Answer
The first 10 multiples of 3 are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar{x}=\frac{\sum_{i=1}^{10} x_{i}}{10}=\frac{165}{10}=16.5$
The following table is obtained.

x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
3	-13.5	182.25
6	-10.5	110.25
9	-7.5	56.25
12	-4.5	20.25
15	-1.5	2.25
18	1.5	2.25
21	4.5	20.25
24	7.5	56.25
27	10.5	110.25
30	13.5	182.25
		742.5

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{10} \times 742.5=74.25$

Question 4:

Find the mean and variance for the data

$x i$	6	10	14	18	24	28	30
$f i$	2	4	7	12	8	4	3

Answer

The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f} \boldsymbol{i}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$	$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98	-5	25	175
18	12	216	-1	1	12
24	8	192	5	25	200
28	4	112	9	81	324
30	3	90	11	121	363
	40	760			1736

Here, $\mathrm{N}=40, \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=760$
$\therefore \overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}=\frac{760}{40}=19$
Variance $=\left(\sigma^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{40} \times 1736=43.4$

Question 5:

Find the mean and variance for the data

$x i$	92	93	97	98	102	104	109
$f i$	3	2	3	2	6	3	3

Answer

The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f} \boldsymbol{i}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$	$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
92	3	276	-8	64	192
93	2	186	-7	49	98
97	3	291	-3	9	27
98	2	196	-2	4	8
102	6	612	2	4	24
104	3	312	4	16	48
109	3	327	9	81	243
	22	2200			640

Here, $\mathrm{N}=22, \sum_{\mathrm{i}=1} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2200$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{22} \times 2200=100$
$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{N} \sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{22} \times 640=29.09$

Question 6:

Find the mean and standard deviation using short-cut method.

x_{i}	60	61	62	63	64	65	66	67	68
f_{i}	2	1	12	29	25	12	10	4	5

Answer

The data is obtained in tabular form as follows.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\mathrm{f}_{\mathrm{i}}=\frac{\mathbf{x}_{\mathrm{i}}-64}{1}$	$\boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i} \boldsymbol{y}_{\boldsymbol{i}}{ }^{\mathbf{2}}} \mathbf{\| 6 0}$
6	-4	16	-8	32	
62	12	-3	9	-3	9
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80
	100	220		0	286

Mean, $\quad \overline{\mathrm{x}}=\mathrm{A} \frac{\sum_{\mathrm{i}=1}^{9} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=64+\frac{0}{100} \times \mathrm{l}=64+0=64$
Variance,$\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{9} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{9} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{1}{100^{2}}[100 \times 286-0] \\
& =2.86
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation $(\sigma)=\sqrt{2.86}=1.69$

Question 7:

Find the mean and variance for the following frequency distribution.

Classes	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$	$180-210$
Frequencies	2	3	5	10	3	5	2

Answer

Class	Frequency $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$y_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-105}{30}$	$\boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{2}}$
$0-30$	2	15	-3	9	-6	18
$30-60$	3	45	-2	4	-6	12
$60-90$	5	75	-1	1	-5	5
$90-120$	10	135	0	0	0	0
$120-150$	3	165	2	1	3	3
$150-180$	5	195	3	9	6	18
$180-210$	2			20		

Mean, $\quad \bar{x}=A+\frac{\sum_{i=1}^{7} f_{i} y_{i}}{N} \times h=105+\frac{2}{30} \times 30=105+2=107$
$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right] \\
& =2280-4 \\
& =2276
\end{aligned}
$$

Question 8:

Find the mean and variance for the following frequency distribution.

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequencies	5	8	15	16	6

Answer

Class	Frequency $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$y_{i}=\frac{\boldsymbol{x}_{\mathrm{i}}-25}{10}$	$\boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}^{\mathbf{2}}$
$0-10$	5	5	-2	4	-10	20
$10-20$	8	15	-1	1	-8	8
$20-30$	15	25	0	0	0	0
$30-40$	16	35	1	1	16	16
$40-50$	6	45	2	4	12	24
	50				10	68

Mean, $\bar{x}=A+\frac{\sum_{i=1}^{5} f_{i} y_{i}}{N} \times h=25+\frac{10}{50} \times 10=25+2=27$

$$
\begin{aligned}
\operatorname{Variance}\left(\sigma^{2}\right) & =\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right] \\
& =\frac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right] \\
& =\frac{1}{25}[3400-100]=\frac{3300}{25} \\
& =132
\end{aligned}
$$

Question 9:
Find the mean, variance and standard deviation using short-cut method

Height in cms	No. of children
$70-75$	3
$75-80$	4
$80-85$	7
$85-90$	7
$90-95$	9
$95-100$	6
$100-105$	3
$105-110$	7
$110-115$	

Answer

Class	Frequenc $\boldsymbol{y} \boldsymbol{f}_{\boldsymbol{i}}$	Mid- poin $\mathbf{t} \boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{y}_{\mathrm{i}}=\frac{\mathbf{x}_{\mathrm{i}}-92.5}{5}$	$\boldsymbol{y}_{\boldsymbol{i}}$ $\mathbf{2}$	$\boldsymbol{f}_{\boldsymbol{i} \boldsymbol{y}}$ \boldsymbol{i}	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$ $\mathbf{2}$
$70-75$	3	72.5	-4	16	- 12	48
$75-80$	4	77.5	-3	9	-	36
$80-85$	7	82.5	-2	4	-	28
$85-90$	7	87.5	-1	1	-7	7
$90-95$	15	92.5	0	0	0	0

$95-100$	9	97.5	1	1	9	9
$100-105$	6	102. 5	2	4	12	24
$105-110$	6	107. 5	3	9	18	54
$110-115$	3	112. 5	4	16	12	48
	60				6	25

Mean, $\quad \bar{x}=A+\frac{\sum_{i=1}^{9} f_{i} y_{i}}{N} \times h=92.5+\frac{6}{60} \times 5=92.5+0.5=93$
$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{9} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{9} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{(5)^{2}}{(60)^{2}}\left[60 \times 254-(6)^{2}\right] \\
& =\frac{25}{3600}(15204)=105.58
\end{aligned}
$$

$\therefore \mathrm{S} \tan$ dard deviation $(\sigma)=\sqrt{105.58}=10.27$

Question 10:

The diameters of circles (in mm) drawn in a design are given below:

Diameters	No. of children
$33-36$	15
$37-40$	17
$41-44$	21

$45-48$	22
$49-52$	25

Answer

Class Interval	Frequency $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{y}_{\mathrm{i}}=\frac{\mathbf{x}_{\mathrm{i}}-42.5}{4}$	$\boldsymbol{f}_{\boldsymbol{i}}^{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}{ }^{\mathbf{2}}$
$32.5-36.5$	15	34.5	-2	4	-30	60
$36.5-40.5$	17	38.5	-1	1	-17	17
$40.5-44.5$	21	42.5	0	0	0	0
$44.5-48.5$	22	46.5	1	1	22	22
$48.5-52.5$	25	50.5	2	4	50	100
	100				25	199

Here, $N=100, h=4$
Let the assumed mean, A , be 42.5 .

$$
\begin{aligned}
& \text { Mean, } \begin{aligned}
\bar{x}=A & +\frac{\sum_{i=1}^{5} f_{i} y_{i}}{N} \times h=42.5+\frac{25}{100} \times 4=43.5 \\
\text { Variance }\left(\sigma^{2}\right) & =\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{5} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{5} f_{i} y_{i}\right)^{2}\right] \\
& =\frac{16}{10000}\left[100 \times 199-(25)^{2}\right] \\
& =\frac{16}{10000}[19900-625] \\
& =\frac{16}{10000} \times 19275 \\
& =30.84
\end{aligned}
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation $(\sigma)=5.55$

Class XI : Maths
Chapter 13 : Statistics

Questions and Solutions | Miscellaneous Exercise 13 - NCERT Books

Question 1:

The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are $6,7,10,12,12$ and 13 , find the remaining two observations.

Answer
Let the remaining two observations be x and y.
Therefore, the observations are 6, 7, 10, 12, 12, 13, x, y.
Mean, $\bar{x}=\frac{6+7+10+12+12+13+x+y}{8}=9$
$\Rightarrow 60+x+y=72$
$\Rightarrow x+y=12$

Variance $=9.25=\frac{1}{n} \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}$
$9.25=\frac{1}{8}\left[(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(3)^{2}+(4)^{2}+x^{2}+y^{2}-2 \times 9(x+y)+2 \times(9)^{2}\right]$
$9.25=\frac{1}{8}\left[9+4+1+9+9+16+x^{2}+y^{2}-18(12)+162\right]$
[Using (1)]
$9.25=\frac{1}{8}\left[48+x^{2}+y^{2}-216+162\right]$
$9.25=\frac{1}{8}\left[x^{2}+y^{2}-6\right]$
$\Rightarrow x^{2}+y^{2}=80$
From (1), we obtain
$x^{2}+y^{2}+2 x y=144$
From (2) and (3), we obtain
$2 x y=64$ (4)

Subtracting (4) from (2), we obtain

$$
\begin{align*}
& x^{2}+y^{2}-2 x y=80-64=16 \\
& \Rightarrow x-y= \pm 4 \ldots \text { (5) } \tag{5}
\end{align*}
$$

Therefore, from (1) and (5), we obtain
$x=8$ and $y=4$, when $x-y=4$
$x=4$ and $y=8$, when $x-y=-4$
Thus, the remaining observations are 4 and 8.

Question 2:

The mean and variance of 7 observations are 8 and 16 , respectively. If five of the observations are $2,4,10,12$ and 14 . Find the remaining two observations.

Answer

Let the remaining two observations be x and y.
The observations are 2, 4, 10, 12, 14, x, y.
Mean, $\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$
$\Rightarrow 56=42+x+y$
$\Rightarrow x+y=14$
Variance $=16=\frac{1}{n} \sum_{i=1}^{7}\left(x_{i}-\bar{x}\right)^{2}$
$16=\frac{1}{7}\left[(-6)^{2}+(-4)^{2}+(2)^{2}+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}\right]$
$16=\frac{1}{7}\left[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)\right]$
[Using (1)]
$16=\frac{1}{7}\left[108+x^{2}+y^{2}-224+128\right]$
$16=\frac{1}{7}\left[12+x^{2}+y^{2}\right]$
$\Rightarrow x^{2}+y^{2}=112-12=100$
$x^{2}+y^{2}=100$
From (1), we obtain
$x^{2}+y^{2}+2 x y=196$
From (2) and (3), we obtain
$2 x y=196-100$
$\Rightarrow 2 x y=96$
Subtracting (4) from (2), we obtain
$x^{2}+y^{2}-2 x y=100-96$
$\Rightarrow(x-y)^{2}=4$
$\Rightarrow x-y= \pm 2$
Therefore, from (1) and (5), we obtain
$x=8$ and $y=6$ when $x-y=2$
$x=6$ and $y=8$ when $x-y=-2$
Thus, the remaining observations are 6 and 8 .

Question 3:

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3 , find the new mean and new standard deviation of the resulting observations.

Answer

Let the observations be $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, and x_{6}.
It is given that mean is 8 and standard deviation is 4 .

$$
\begin{equation*}
\text { Mean, } \bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}=8 \tag{1}
\end{equation*}
$$

If each observation is multiplied by 3 and the resulting observations are y_{i}, then
$y_{i}=3 x_{j}$ i.e., $x_{i}=\frac{1}{3} y_{i}$, for $i=1$ to 6
\therefore New mean, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}}{6}$

$$
\begin{aligned}
& =\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6} \\
& =3 \times 8 \\
& =24
\end{aligned}
$$

Standard deviation, $\sigma=\sqrt{\frac{1}{n} \sum_{j=1}^{6}\left(x_{j}-\bar{x}\right)^{2}}$

$$
\begin{align*}
& \therefore(4)^{2}=\frac{1}{6} \sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2} \\
& \sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=96 \tag{2}
\end{align*}
$$

From (1) and (2), it can be observed that,
$\bar{y}=3 \bar{x}$
$\bar{x}=\frac{1}{3} \bar{y}$
Substituting the values of x_{i} and \bar{x} in (2), we obtain
$\sum_{i=1}^{6}\left(\frac{1}{3} y_{i}-\frac{1}{3} \bar{y}\right)^{2}=96$
$\Rightarrow \sum_{i=1}^{6}\left(y_{i}-\bar{y}\right)^{2}=864$
Therefore, variance of new observations $=\left(\frac{1}{6} \times 864\right)=144$
Hence, the standard deviation of new observations is $\sqrt{144}=12$

Question 4:

Given that $\bar{x}^{\text {is }}$ the mean and σ^{2} is the variance of n observations $x_{1}, x_{2} \ldots x_{n}$. Prove that the mean and variance of the observations $a x_{1}, a x_{2}, a x_{3} \ldots a x_{n}$ are $a x$ and $a^{2} \sigma^{2}$, respectively $(a \neq 0)$.

Answer
The given n observations are $x_{1}, x_{2} \ldots x_{n}$.
Mean $=\bar{x}$
Variance $=\sigma^{2}$
$\therefore \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)^{2}$
If each observation is multiplied by a and the new observations are y_{i}, then
$y_{i}=a x_{i}$ i.e., $x_{i}=\frac{1}{a} y_{i}$
$\therefore \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{1}{n} \sum_{i=1}^{n} a x_{i}=\frac{a}{n} \sum_{i=1}^{n} x_{i}=a \bar{x} \quad\left(\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)$
Therefore, mean of the observations, $a x_{1}, a x_{2} \ldots a x_{n}$, is $a \bar{x}$.
Substituting the values of x_{i} and \bar{x} in (1), we obtain

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{a} y_{i}-\frac{1}{a} \bar{y}\right)^{2} \\
& \Rightarrow a^{2} \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

Thus, the variance of the observations, $a x_{1}, a x_{2} \ldots a x_{n}$, is $a^{2} \sigma^{2}$.

Question 5:

The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted.
(ii) If it is replaced by 12 .

Answer
(i) Number of observations $(n)=20$

Incorrect mean $=10$
Incorrect standard deviation $=2$
$\bar{x}=\frac{1}{n} \sum_{i=1}^{20} x_{i}$
$10=\frac{1}{20} \sum_{i=1}^{20} x_{i}$
$\Rightarrow \sum_{i=1}^{20} x_{i}=200$
That is, incorrect sum of observations $=200$
Correct sum of observations $=200-8=192$
\therefore Correct mean $=\frac{\text { Correct sum }}{19}=\frac{192}{19}=10.1$

Standard deviation $\sigma=\sqrt{\frac{1}{n} \sum_{j=1}^{n} x_{i}^{2}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\sqrt{\frac{1}{n} \sum_{j=1}^{n} x_{i}^{2}-(\bar{x})^{2}}$
$\Rightarrow 2=\sqrt{\frac{1}{20} \text { Incorrect } \sum_{i=1}^{n} x_{i}{ }^{2}-(10)^{2}}$
$\Rightarrow 4=\frac{1}{20}$ Incorrect $\sum_{i=1}^{n} x_{i}{ }^{2}-100$
\Rightarrow Incorrect $\sum_{i=1}^{n} x_{i}{ }^{2}=2080$
\therefore Correct $\sum_{i=1}^{n} x_{i}{ }^{2}=$ Incorrect $\sum_{i=1}^{n} x_{i}{ }^{2}-(8)^{2}$

$$
\begin{aligned}
& =2080-64 \\
& =2016
\end{aligned}
$$

\therefore Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}{ }^{2}}{n}-(\text { Correct mean })^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{2016}{19}-(10.1)^{2}} \\
& =\sqrt{106.1-102.01} \\
& =\sqrt{4.09} \\
& =2.02
\end{aligned}
$$

(ii) When 8 is replaced by 12 ,

Incorrect sum of observations $=200$
\therefore Correct sum of observations $=200-8+12=204$
\therefore Correct mean $=\frac{\text { Correct sum }}{20}=\frac{204}{20}=10.2$
Standard deviation $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}{ }^{2}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}{ }^{2}-(\bar{x})^{2}}$
$\Rightarrow 2=\sqrt{\frac{1}{20} \text { Incorrect } \sum_{i=1}^{n} x_{i}^{2}-(10)^{2}}$
$\Rightarrow 4=\frac{1}{20}$ Incorrect $\sum_{i=1}^{n} x_{i}^{2}-100$
\Rightarrow Incorrect $\sum_{i=1}^{n} x_{i}{ }^{2}=2080$
\therefore Correct $\sum_{i=1}^{n} x_{i}{ }^{2}=$ Incorrect $\sum_{i=1}^{n} x_{i}{ }^{2}-(8)^{2}+(12)^{2}$

$$
=2080-64+144
$$

$$
=2160
$$

\therefore Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}{ }^{2}}{n}-(\text { Correct mean })^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{2160}{20}-(10.2)^{2}} \\
& =\sqrt{108-104.04} \\
& =\sqrt{3.96} \\
& =1.98
\end{aligned}
$$

Question 6:

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject	Mathematics	Physics	Chemistry
Mean	42	32	40.9
Standard deviation	12	15	20

Which of the three subjects shows the highest variability in marks and which shows the lowest?
Answer

Standard deviation of Mathematics $=12$
Standard deviation of Physics $=15$
Standard deviation of Chemistry $=20$
The coefficient of variation (C.V.) is given by $\frac{\text { Standard deviation }}{\text { Mean }} \times 100$.
C.V. $($ in Mathematics $)=\frac{12}{42} \times 100=28.57$
C.V. $($ in Physics $)=\frac{15}{32} \times 100=46.87$
C.V. $($ in Chemistry $)=\frac{20}{40.9} \times 100=48.89$

The subject with greater C.V. is more variable than others.
Therefore, the highest variability in marks is in Chemistry and the lowest variability in marks is in Mathematics.

Question 7:

The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21,21 and 18 . Find the mean and standard deviation if the incorrect observations are omitted.

Answer
Number of observations (n) $=100$
Incorrect mean $(\bar{x})=20$
Incorrect standard deviation $(\sigma)=3$

$$
\begin{aligned}
& \Rightarrow 20=\frac{1}{100} \sum_{i=1}^{100} x_{i} \\
& \Rightarrow \sum_{i=1}^{100} x_{i}=20 \times 100=2000
\end{aligned}
$$

\therefore Incorrect sum of observations $=2000$
\Rightarrow Correct sum of observations $=2000-21-21-18=2000-60=1940$
\therefore Correct mean $=\frac{\text { Correct sum }}{100-3}=\frac{1940}{97}=20$

Standard deviation $(\sigma)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}}$
$\Rightarrow 3=\sqrt{\frac{1}{100} \times \text { Incorrect } \sum x_{i}^{2}-(20)^{2}}$
\Rightarrow Incorrect $\sum x_{i}^{2}=100(9+400)=40900$

$$
\text { Correct } \begin{aligned}
\sum_{i=1}^{n} x_{i}^{2} & =\text { Incorrect } \sum_{i=1}^{n} x_{i}^{2}-(21)^{2}-(21)^{2}-(18)^{2} \\
& =40900-441-441-324 \\
& =39694
\end{aligned}
$$

\therefore Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}{ }^{2}}{n}-(\text { Correct mean })^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{39694}{97}-(20)^{2}} \\
& =\sqrt{409.216-400} \\
& =\sqrt{9.216} \\
& =3.036
\end{aligned}
$$

