∛Saral

Å

CLASS IX: MATHS Chapter 1: Number System

Questions and Solutions | EXERCISE 1.3 - NCERT Books

Q1. Write the following in decimal form and say what kind of decimal expansion each has :

(i) $\frac{36}{100}$	(ii) $\frac{1}{11}$	(iii) $4\frac{1}{8}$
(iv) $\frac{3}{13}$	(v) $\frac{2}{11}$	(vi) $\frac{329}{400}$

Sol. (i) $\frac{36}{100} = 0.36$ (Terminating) (ii) $\frac{1}{11} = 0.090909...$ (Non terminating Repeating) $1\sqrt{1.00000}$ (0.090909....

$$\begin{array}{r}11 \\ -99 \\ \hline 100 \\ -99 \\ \hline 100 \\ 99 \\ \hline 100 \\ 99 \end{array}$$

(iii) $4\frac{1}{8} = \frac{33}{8} = 4.125$ (Terminating decimal)

(iv)
$$\frac{3}{13} = 0.230769230769.....$$

= $0.\overline{230769}$ (Non Terminating repeating)

(v)
$$\frac{2}{11} = 0.1818.... = 0.\overline{18}$$
 (Non Terminating repeating)

(vi)
$$\frac{329}{400}$$
 400) 329.0000 (0.8225
 3200
900
 800
1000
 800
2000
 2000
 \times

 $\frac{329}{400} = 0.8225 \Longrightarrow (\text{Terminating})$

- **Q2.** You know that $\frac{1}{7} = 0.\overline{142857}$. Can you predict what the decimal expansion of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division ? If so, how ?
- Sol. Yes, we can predict decimal explain without actually doing long division method as

$$\frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$$

Class IX Maths

www.esaral.com

1

<mark>∛</mark>Saral

Å

 $\frac{3}{7} = 3 \times \frac{1}{7} = 3 \times .\overline{142857} = .\overline{428571}$ $\frac{4}{7} = 4 \times \frac{1}{7} = 4 \times .\overline{142857} = .\overline{571428}$ $\frac{5}{7} = 5 \times \frac{1}{7} = 5 \times .\overline{142857} = .\overline{714285}$ $\frac{6}{7} = 6 \times \frac{1}{7} = 6 \times .\overline{142857} = .\overline{857142}$ Express the following in the form p

Q3. Express the following in the form p/q, where p and q are integers and $q \neq 0$.

(i) $0.\overline{6}$ (ii) $0.4\overline{7}$ (iii) 0.001

Sol. (i) Let x = 0.6666...(1) Multiplying both the sides by 10. 10 x = 6.666...(2)Subtract (1) from (2) 10x - x = (6.66666...) - (0.66666...) \Rightarrow 9x = 6 \Rightarrow x = $\frac{6}{9} = \frac{2}{3}$ (ii) Let $x = 0.4\overline{7} = .4777...$ Multiply both sides by 10 $10x = 4.\overline{7}$...(1) Multiply both sides by 10 $100 \ x = 47.\overline{7}$...(2) Subtract (1) from (2) 90x = 43 $x = \frac{43}{90}$ (iii) Let x = 0.001 = 0.001001001......(1) Multiply both sides by 1000 1000x = 1.001...(2) Subtract (1) from (2)999x = 1

Å

 $\mathbf{x} = \frac{1}{999}$

Q4. Express 0.99999 in the form p/q. Are you surprised by your answer ? With your teacher and classmates discuss why the answer makes sense.

 Sol. Let x = 0.999.... ...(1)

 Multiply both sides by 10 we get
 ...(2)

 10x = 9.99.... ...(2)

 Subtract (1) from (2)
 ...(2)

 $9x = 9 \implies x = 1$.9999.... = 1 = $\frac{1}{1}$

- $\therefore p = 1, q = 1$
- **Q5.** What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17 ? Perform the division to check your answer.
- Sol. Maximum no. of digits in the repeating block of digits in decimal expansion of $\frac{1}{17}$ can be 16.

<mark>∛</mark>Saral

Å

0.05882352941176470	05	
17 1.00000000000000000000000000000000000	00000	
85		
150		
136		
140		
136		
40		
<u></u>		
60 51		
85		
$\frac{-35}{50}$		
34		
160		
153		
70		
68		
20		
17		
30		
1/		
130		
119		
110		
$\frac{102}{80}$		
68		
120		
119		
100		
85		
150		
136		

4

Ans. .0588235294117647

- **Q6.** Look at several examples of rational numbers in the form p/q ($q \neq 0$), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy ?
- Sol. There is a property that q must satisfy rational no. of form $\frac{p}{q}$ (q \neq 0) where p, q are integers with no common factors other than 1 having terminating decimal representation (expansions) is that the prime factorization of q has only powers of 2 or powers of 5 or both [i.e., q must be of the form $2^m \times 5^n$]. Here m,n are whole numbers.

Class IX Maths

www.esaral.com

4

∛Saral

Q7. Write three numbers whose decimal expansion are non-terminating non-recurring.

- Sol. 0.01001000100001... 0.202002000200002... 0.003000300003...
- Q8. Find three different irrational numbers between the rational numbers 5/7 and 9/11.

Sol. 7)
$$\overline{5.000000}(0.714285...)$$

 $\frac{49}{10}$
 $\frac{7}{30}$
 $\frac{28}{20}$
 $\frac{14}{60}$
 $\frac{56}{40}$
 $\frac{35}{5}$
Thus, $\frac{5}{7} = 0.714285$
 $\frac{9}{11} = 11$) 9.0000 (0.8181...)
 $\frac{88}{20}$
 $\frac{11}{90}$
 $\frac{88}{20}$
 $\frac{11}{9}$
Thus, $\frac{9}{11} = 0.\overline{81}$

Three different irrational numbers between

<mark>∛</mark>Saral

Ą

Q9. Classify the following numbers as rational or irrational :

(i) $\sqrt{23}$ (ii) $\sqrt{225}$ (iii) 0.3796(iv) 7.478478(v) 1.101001000100001

Sol. (i) $\sqrt{23}$ = irrational number

- (ii) $\sqrt{225}$ = 15 = Rational number
- (iii) 0.3796 decimal expansion is terminating

 \Rightarrow .3796 = Rational number.

- (iv) 7.478478...
 - = $7.\overline{478}$ which is non terminating recurring.
 - = Rational number.

(v) 1.101001000100001.....

decimal expansion is non terminating and non repeating.

= Irrational number