Д

CLASS IX: MATHS Chapter 1: Number System

Questions and Solutions | EXERCISE 1.4 - NCERT Books

Q1. Classify the following numbers as rational or irrational :

- (i) $2 \sqrt{5}$ (ii) $(3 + \sqrt{23}) \sqrt{23}$ (iii) $\frac{2\sqrt{7}}{7\sqrt{7}}$ (iv) $\frac{1}{\sqrt{2}}$ (v) 2π
- Sol. (i) ∵ 2 is a rational number and √5 is an irrational number.
 ∴ 2 √5 is an irrational number.
 (ii) (3 + √23) √23 ⇒ (3 + √23) √23 = 3 is a rational number.
 - (iii) $\frac{2\sqrt{7}}{7\sqrt{7}} = \frac{2}{7}$ Rational number.
 - (iv) $\frac{1}{\sqrt{2}}$

 \therefore 1 is a rational number and $\sqrt{2}$ is an irrational number.

So,
$$\frac{1}{\sqrt{2}}$$
 is irrational number.

(v) 2π

 \therefore 2 is a rational number and π is an irrational number So, 2π is irrational number.

Q2. Simplify each of the following expressions :

(i) $(3 + \sqrt{3})(2 + \sqrt{2})$ (ii) $(3 + \sqrt{3})(3 - \sqrt{3})$ (iii) $(\sqrt{5} + \sqrt{2})^2$ (iv) $(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})$

Sol. (i)
$$(3 + \sqrt{3})(2 + \sqrt{2}) = 3(2 + \sqrt{2}) + \sqrt{3}(2 + \sqrt{2})$$

= $6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$
(ii) $(3 + \sqrt{3})(3 - \sqrt{3}) = (3)^2 - (\sqrt{3})^2 = 9 - 3 = 6$

∛Saral

(iii)
$$(\sqrt{5} + \sqrt{2})^2$$

= $(\sqrt{5})^2 + 2\sqrt{10} + (\sqrt{2})^2$
= $7 + 2\sqrt{10}$
(iv) $(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = 5 - 2 = 3$

- Q3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, $\pi = c/d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction ?
- **Sol.** There is no contradiction. When we measure a length with a scale or any other device, we only get an approximate rational value. Therefore, we may not realise that c or d is irrational.
- Q4. Represent $\sqrt{9.3}$ on the number line.

Sol.
$$A = 9.3$$
 units $B \rightarrow C$ P *l* unit

Let *l* be the number line.

Draw a line segment AB = 9.3 units and BC = 1 unit. Find the mid point O of AC. Draw a semicircle with centre O and radius OA or OC.

Draw BD \perp AC intersecting the semicircle at D. Then, BD = $\sqrt{9.3}$ units. Now, with centre B and radius BD, draw an arc intersecting the number line ℓ at P.

Hence, $BD = BP = \sqrt{9.3}$

Q5. Rationalise the denominators of the following :

(i)
$$\frac{1}{\sqrt{7}}$$
 (ii) $\frac{1}{\sqrt{7} - \sqrt{6}}$ (iii) $\frac{1}{\sqrt{5} + \sqrt{2}}$ (iv) $\frac{1}{\sqrt{7} - 2}$

Sol. (i)
$$\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{7}}{7}$$

(ii) $\frac{1}{\sqrt{7} - \sqrt{6}} = \frac{1}{\sqrt{7} - \sqrt{6}} \times \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}}$

∛Saral

$$= \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \frac{\sqrt{7} + \sqrt{6}}{1} = \sqrt{7} + \sqrt{6}$$

(iii) $\frac{1}{\sqrt{5} + \sqrt{2}}$
 $\frac{1}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{\sqrt{5} - \sqrt{2}}{3}$

(iv)
$$\frac{1}{\sqrt{7}-2} = \frac{1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2}$$

= $\frac{\sqrt{7}+2}{7-4} = \frac{\sqrt{7}+2}{3}$

Class IX Maths

www.esaral.com

3