CLASS IX: MATHS

Chapter 1: Number System

Questions and Solutions | EXERCISE 1.4 - NCERT Books

Q1. Classify the following numbers as rational or irrational :
(i) $2-\sqrt{5}$
(ii) $(3+\sqrt{23})-\sqrt{23}$
(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}$
(iv) $\frac{1}{\sqrt{2}}$
(v) 2π

Sol. (i) $\because 2$ is a rational number and $\sqrt{5}$ is an irrational number.
$\therefore 2-\sqrt{5}$ is an irrational number.
(ii) $(3+\sqrt{23})-\sqrt{23} \Rightarrow(3+\sqrt{23})-\sqrt{23}=3$ is a rational number.
(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$ Rational number.
(iv) $\frac{1}{\sqrt{2}}$
$\because 1$ is a rational number and $\sqrt{2}$ is an irrational number.
So, $\frac{1}{\sqrt{2}}$ is irrational number.
(v) 2π
$\because 2$ is a rational number and π is an irrational number
So, 2π is irrational number.

Q2. Simplify each of the following expressions :
(i) $(3+\sqrt{3})(2+\sqrt{2})$
(ii) $(3+\sqrt{3})(3-\sqrt{3})$
(iii) $(\sqrt{5}+\sqrt{2})^{2}$
(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

Sol. (i) $(3+\sqrt{3})(2+\sqrt{2})=3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2})$

$$
=6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}
$$

(ii) $(3+\sqrt{3})(3-\sqrt{3})=(3)^{2}-(\sqrt{3})^{2}=9-3=6$
(iii) $(\sqrt{5}+\sqrt{2})^{2}$

$$
\begin{aligned}
& =(\sqrt{5})^{2}+2 \sqrt{10}+(\sqrt{2})^{2} \\
& =7+2 \sqrt{10}
\end{aligned}
$$

(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=5-2=3$

Q3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, $\pi=\mathrm{c} / \mathrm{d}$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Sol. There is no contradiction. When we measure a length with a scale or any other device, we only get an approximate rational value. Therefore, we may not realise that c or d is irrational.

Q4. Represent $\sqrt{9.3}$ on the number line.

Sol.

Let l be the number line.
Draw a line segment $\mathrm{AB}=9.3$ units and $\mathrm{BC}=1$ unit. Find the mid point O of AC .
Draw a semicircle with centre O and radius OA or OC.
Draw $\mathrm{BD} \perp \mathrm{AC}$ intersecting the semicircle at D . Then, $\mathrm{BD}=\sqrt{9.3}$ units. Now, with centre B and radius BD , draw an arc intersecting the number line ℓ at P .
Hence, $\mathrm{BD}=\mathrm{BP}=\sqrt{9.3}$

Q5. Rationalise the denominators of the following :
(i) $\frac{1}{\sqrt{7}}$
(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}$
(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$
(iv) $\frac{1}{\sqrt{7}-2}$

Sol. (i) $\frac{1}{\sqrt{7}}=\frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{7}}{7}$
(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}=\frac{1}{\sqrt{7}-\sqrt{6}} \times \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}$

$$
=\frac{\sqrt{7}+\sqrt{6}}{7-6}=\frac{\sqrt{7}+\sqrt{6}}{1}=\sqrt{7}+\sqrt{6}
$$

(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$
$\frac{1}{\sqrt{5}+\sqrt{2}} \times \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{3}$
(iv) $\frac{1}{\sqrt{7}-2}=\frac{1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2}$
$=\frac{\sqrt{7}+2}{7-4}=\frac{\sqrt{7}+2}{3}$

