
<mark>∛</mark>Saral

Å

CLASS IX: MATHS Chapter 2: Polynomials

Questions and Solutions | EXERCISE 2.2 - NCERT Books

∛Saral

(iv)
$$p(x) = (x - 1) (x + 1)$$

 $p(0) = (0 - 1) (0 + 1) = (-1)(1) = -1$
 $p(1) = (1 - 1) (1 + 1) = 0(2) = 0$
 $p(2) = (2 - 1) (2 + 1) = (1)(3) = 3$

Q3. Verify whether the following are zeroes of the polynomial, indicated against them,

(i)
$$p(x) = 3x + 1$$
, $x = -\frac{1}{3}$
(ii) $p(x) = 5x - \pi$, $x = \frac{4}{5}$
(iii) $p(x) = x^2 - 1$, $x = 1$, -1
(iv) $p(x) = (x + 1) (x - 2)$, $x = -1$, 2
(v) $p(x) = x^2$, $x = 0$
(vi) $p(x) = \ell x + m$, $x = -\frac{m}{\ell}$
(vii) $p(x) = 3x^2 - 1$, $x = -\frac{1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$
(viii) $p(x) = 3x + 1$, $x = -\frac{1}{2}$
Sol. (i) $p(x) = 3x + 1$, $x = -\frac{1}{3}$
 $p\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right) + 1 = -1 + 1 = 0$
 $\therefore -\frac{1}{3}$ is a zero of $p(x)$.
(ii) $p(x) = 5x - \pi$, $x = \frac{4}{5}$
 $p\left(\frac{4}{5}\right) = 5\left(\frac{4}{5}\right) - \pi = 4 - \pi \neq 0$
 $\therefore \frac{4}{5}$ is not a zero of $p(x)$.
(iii) $p(x) = x^2 - 1$, $x = 1$, -1
 $p(1) = (1)^2 - 1 = 1 - 1 = 0$
 $p(-1) = (-1)^2 - 1 = 1 - 1 = 0$
 $\therefore 1$, -1 are zero's of $p(x)$.

*****Saral

(iv)
$$p(x) = (x + 1)(x - 2), \quad x = -1, 2$$

 $p(-1) = (-1 + 1)(-1 - 2) = (0)(-3) = 0$
 $p(2) = (2 + 1)(2 - 2) = (3)(0) = 0$
 $\therefore -1, 2$ are zero's of $p(x)$
(v) $p(x) = x^2, x = 0$
 $p(0) = 0$
 $\therefore 0$ is a zero of $p(x)$
(vi) $p(x) = \ell x = m, x = \frac{-m}{\ell}$
 $p\left(\frac{-m}{\ell}\right) = \ell\left(\frac{-m}{\ell}\right) + m = -m + m = 0$
 $\therefore \frac{-m}{\ell}$ is a zero of $p(x)$.
(vii) $p(x) = 3x^2 - 1, x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
 $p\left(-\frac{1}{\sqrt{3}}\right) = 3\left(-\frac{1}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{1}{3}\right) - 1$
 $= 1 - 1 = 0$
 $p\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{2}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{4}{3}\right) - 1$
 $= 4 - 1 = 3 \neq 0$
So, $-\frac{1}{\sqrt{3}}$ is a zero of $p(x)$ and $\frac{2}{\sqrt{3}}$ is not a zero of $p(x)$.
(viii) $p(x) = 2x + 1, x = \frac{1}{2}$
 $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \neq 0$
 $\therefore \frac{1}{2}$ is not a zero of $p(x)$.

Q4. Find the zero of the polynomial in each of the following cases : (i) p(x) = x + 5(ii) p(x) = x - 5(iii) p(x) = 2x + 5(iv) p(x) = 3x - 2(v) p(x) = 3x(vi) $p(x) = ax, a \neq 0$ (vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers.

Class IX Maths

www.esaral.com

∛Saral

Å

Sol. (i) p(x) = x + 5p(x) = 0 \Rightarrow x + 5 = 0 \Rightarrow x = - 5 \therefore -5 is zero of the polynomial p(x). (ii) p(x) = x - 5 $\mathbf{p}(\mathbf{x}) = \mathbf{0}$ x - 5 = 0or x = 5 \therefore 5 is zero of polynomial p(x). (iii) p(x) = 2x + 5 $\mathbf{p}(\mathbf{x}) = \mathbf{0}$ 2x + 5 = 02x = -5 $\Rightarrow x = -\frac{5}{2}$ $\therefore -\frac{5}{2}$ is zero of polynomial p(x). (iv) p(x) = 3x - 2 $p(x) = 0 \Longrightarrow 3x - 2 = 0$ or $x = \frac{2}{3}$ $\therefore \frac{2}{3}$ is zero of polynomial p(x). (v) p(x) = 3x $p(x) = 0 \Longrightarrow 3x = 0$ or $\mathbf{x} = \mathbf{0}$ \therefore 0 is zero of polynomial p(x). (vi) p(x) = ax, $a \neq 0$ \Rightarrow ax = 0 or x = 0 \therefore 0 is zero of p(x) (vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers $cx + d = 0 \Longrightarrow cx = -d$ $\mathbf{x} = -\frac{\mathbf{d}}{\mathbf{c}}$ $\therefore -\frac{d}{c}$ is zero of polynomial p(x).