CLASS IX: MATHS

Chapter 2: Polynomials

Questions and Solutions | EXERCISE 2.2 - NCERT Books

Q1. Find the value of the polynomial $5 x-4 x^{2}+3$ at
(i) $\mathrm{x}=0$
(vi) $x=-1$
(iii) $\mathrm{x}=2$

Sol. Let $f(x)=5 x-4 x^{2}+3$
(i) Value of $f(x)$ at $x=0=f(0)$

$$
=5(0)-4(0)^{2}+3=3
$$

(ii) Value of $f(x)$ at $x=-1=f(-1)$

$$
=5(-1)-4(-1)^{2}+3=-5-4+3=-6
$$

(iii) Value of $f(x)$ at $x=2=f(2)$

$$
\begin{aligned}
& =5(2)-4(2)^{2}+3 \\
& =10-16+3=-3
\end{aligned}
$$

Q2. Find $p(0), p(1), p(2)$, for each of the following polynomials :
(i) $p(y)=y^{2}-y+1$
(ii) $\mathrm{p}(\mathrm{t})=2+\mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t}^{3}$
(iii) $p(x)=x^{3}$
(iv) $p(x)=(x-1)(x+1)$

Sol. (i) $\mathrm{p}(\mathrm{y})=\mathrm{y}^{2}-\mathrm{y}+1$
$\therefore \mathrm{p}(0)=(0)^{2}-(0)+1=1$, $\mathrm{p}(1)=(1)^{2}-(1)+1=1$, $p(2)=(2)^{2}-(2)+1=4-2+1=3$.
(ii) $\mathrm{p}(\mathrm{t})=2+\mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t}^{3}$
$\mathrm{p}(0)=2+0+2(0)^{2}-(0)^{3}=2$
$\mathrm{p}(1)=2+1+2(1)^{2}-(1)^{3}=2+1+2-1=4$
$\mathrm{p}(2)=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4$
(iii) $p(x)=x^{3}$
$\mathrm{p}(0)=(0)^{3}=0$
$\mathrm{p}(1)=(1)^{3}=1$
$\mathrm{p}(2)=(2)^{3}=8$
(iv) $p(x)=(x-1)(x+1)$

$$
\begin{aligned}
& \mathrm{p}(0)=(0-1)(0+1)=(-1)(1)=-1 \\
& \mathrm{p}(1)=(1-1)(1+1)=0(2)=0 \\
& \mathrm{p}(2)=(2-1)(2+1)=(1)(3)=3
\end{aligned}
$$

Q3. Verify whether the following are zeroes of the polynomial, indicated against them,
(i) $p(x)=3 x+1, x=-\frac{1}{3}$
(ii) $p(x)=5 x-\pi, x=\frac{4}{5}$
(iii) $p(x)=x^{2}-1, x=1,-1$
(iv) $p(x)=(x+1)(x-2), x=-1,2$
(v) $p(x)=x^{2}, x=0$
(vi) $p(x)=\ell x+m, x=-\frac{m}{\ell}$
(vii) $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
(viii) $p(x)=2 x+1, x=\frac{1}{2}$

Sol. (i) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}+1, \mathrm{x}=-\frac{1}{3}$
$p\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1=-1+1=0$
$\therefore-\frac{1}{3}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(ii) $p(x)=5 x-\pi, x=\frac{4}{5}$
$p\left(\frac{4}{5}\right)=5\left(\frac{4}{5}\right)-\pi=4-\pi \neq 0$
$\therefore \frac{4}{5}$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=x^{2}-1, x=1,-1$
$\mathrm{p}(1)=(1)^{2}-1=1-1=0$
$\mathrm{p}(-1)=(-1)^{2}-1=1-1=0$
$\therefore 1,-1$ are zero's of $\mathrm{p}(\mathrm{x})$.
(iv) $\mathrm{p}(\mathrm{x})=(\mathrm{x}+1)(\mathrm{x}-2), \quad \mathrm{x}=-1,2$
$\mathrm{p}(-1)=(-1+1)(-1-2)=(0)(-3)=0$
$p(2)=(2+1)(2-2)=(3)(0)=0$
$\therefore-1,2$ are zero's of $\mathrm{p}(\mathrm{x})$
(v) $p(x)=x^{2}, x=0$

$$
p(0)=0
$$

$\therefore 0$ is a zero of $\mathrm{p}(\mathrm{x})$
(vi) $\mathrm{p}(\mathrm{x})=\ell \mathrm{x}=\mathrm{m}, \mathrm{x}=\frac{-\mathrm{m}}{\ell}$

$$
\mathrm{p}\left(\frac{-\mathrm{m}}{\ell}\right)=\ell\left(\frac{-\mathrm{m}}{\ell}\right)+\mathrm{m}=-\mathrm{m}+\mathrm{m}=0
$$

$\therefore \frac{-\mathrm{m}}{\ell}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vii) $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$

$$
\begin{aligned}
& \mathrm{p}\left(-\frac{1}{\sqrt{3}}\right)=3\left(-\frac{1}{\sqrt{3}}\right)^{2}-1= 3\left(\frac{1}{3}\right)-1 \\
&=1-1=0 \\
& \mathrm{p}\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-1=3\left(\frac{4}{3}\right)-1 \\
&=4-1=3 \neq 0
\end{aligned}
$$

So, $-\frac{1}{\sqrt{3}}$ is a zero of $\mathrm{p}(\mathrm{x})$ and $\frac{2}{\sqrt{3}}$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(viii) $p(x)=2 x+1, x=\frac{1}{2}$

$$
\begin{aligned}
& \mathrm{p}\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2 \neq 0 \\
& \therefore \frac{1}{2} \text { is not a zero of } \mathrm{p}(\mathrm{x}) .
\end{aligned}
$$

Q4. Find the zero of the polynomial in each of the following cases :
(i) $p(x)=x+5$
(ii) $\mathrm{p}(\mathrm{x})=\mathrm{x}-5$
(iii) $\mathrm{p}(\mathrm{x})=2 \mathrm{x}+5$
(iv) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}-2$
(v) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}$
(vi) $p(x)=a x, a \neq 0$
(vii) $p(x)=c x+d, c \neq 0, c, d$ are real numbers.

Sol. (i) $p(x)=x+5$

$$
\mathrm{p}(\mathrm{x})=0
$$

$\Rightarrow \mathrm{x}+5=0 \Rightarrow \mathrm{x}=-5$
$\therefore-5$ is zero of the polynomial $\mathrm{p}(\mathrm{x})$.
(ii) $\mathrm{p}(\mathrm{x})=\mathrm{x}-5$
$p(x)=0$
$\mathrm{x}-5=0$
or $\mathrm{x}=5$
$\therefore 5$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=2 x+5$
$p(x)=0$
$2 \mathrm{x}+5=0$
$2 x=-5$
$\Rightarrow \mathrm{x}=-\frac{5}{2}$
$\therefore-\frac{5}{2}$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(iv) $p(x)=3 x-2$
$p(x)=0 \Rightarrow 3 x-2=0$
or $\quad \mathrm{x}=\frac{2}{3}$
$\therefore \frac{2}{3}$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(v) $\mathrm{p}(\mathrm{x})=3 \mathrm{x}$
$p(x)=0 \Rightarrow 3 x=0$
or $\mathrm{x}=0$
$\therefore 0$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.
(vi) $\mathrm{p}(\mathrm{x})=\mathrm{ax}, \quad \mathrm{a} \neq 0$
$\Rightarrow \mathrm{ax}=0 \quad$ or $\mathrm{x}=0$
$\therefore 0$ is zero of $\mathrm{p}(\mathrm{x})$
(vii) $p(x)=c x+d, c \neq 0, c, d$ are real numbers
$\mathrm{cx}+\mathrm{d}=0 \Rightarrow \mathrm{cx}=-\mathrm{d}$
$x=-\frac{d}{c}$
$\therefore-\frac{\mathrm{d}}{\mathrm{c}}$ is zero of polynomial $\mathrm{p}(\mathrm{x})$.

