CLASS IX: MATHS

Chapter 2: Polynomials

Questions and Solutions | EXERCISE 2.3 - NCERT Books

Q1. Determine which of the following polynomials, $(x+1)$ is a factor of :
(i) $x^{3}+x^{2}+x+1$
(ii) $\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
(iii) $\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$
(iv) $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Sol. (i) $x^{3}+x^{2}+x+1$
Let $p(x)=x^{3}+x^{2}+x+1$
The zero of $x+1$ is -1

$$
\begin{aligned}
\mathrm{p}(-1) & =(-1)^{3}+(-1)^{2}+(-1)+1 \\
& =-1+1-1+1=0
\end{aligned}
$$

By Factor theorem $x+1$ is a factor of $p(x)$.
(ii) $\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
The zero of $x+1$ is -1
$\mathrm{p}(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1=1 \neq 0$
By Factor theorem $x+1$ is not a factor of $p(x)$
(iii) $x^{4}+3 x^{3}+3 x^{2}+x+1$

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$
Zero of $x+1$ is -1
$\mathrm{p}(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$
$=1-3+3-1+1=1 \neq 0$
By Factor theorem $x+1$ is not a factor of $p(x)$
(iv) Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{2}) \mathrm{x}+\sqrt{2}$
zero of $x+1$ is -1
$\mathrm{p}(-1)=(-1)^{3}-(-1)^{2}-(2+\sqrt{2})(-1)+\sqrt{2}$
$=-1-1+2+\sqrt{2}+\sqrt{2}=2 \sqrt{2} \neq 0$
By Factor theorem, $x+1$ is not a factor of $p(x)$.

Q2. Use the factor theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases :
(i) $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{3}+\mathrm{x}^{2}-2 \mathrm{x}-1, \mathrm{~g}(\mathrm{x})=\mathrm{x}+1$.
(ii) $p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2$.
(iii) $p(x)=x^{3}-4 x^{2}+x+6 ; g(x)=x-3$

Sol. (i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$. $g(x)=0 \Rightarrow x+1=0 \Rightarrow x=-1$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -1
Now, $p(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1$
$=-2+1+2-1=0$
\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
(ii) Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$,
$g(x)=x+2$
$g(x)=0 \Rightarrow x+2=0$
$\Rightarrow \mathrm{x}=-2$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -2
Now, $p(-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$
$=-8+12-6+1=-1$
\therefore By Factor theorem, $\mathrm{g}(\mathrm{x})$ is not a factor of $\mathrm{p}(\mathrm{x})$
(iii) $p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$
$\mathrm{g}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}-3=0 \Rightarrow \mathrm{x}=3$
\therefore Zero of $\mathrm{g}(\mathrm{x})=3$
Now $p(3)=3^{3}-4(3)^{2}+3+6$

$$
=27-36+3+6=0
$$

\therefore By Factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.

Q3. Find the value of k, if $x-1$ is a factor of $p(x)$ in each of the following cases :
(i) $p(x)=x^{2}+x+k$
(ii) $p(x)=2 x^{2}+k x+\sqrt{2}$
(iii) $\mathrm{p}(\mathrm{x})=\mathrm{kx} \mathrm{x}^{2}-\sqrt{2} \mathrm{x}+1$
(iv) $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-3 \mathrm{x}+\mathrm{k}$

Sol. (i) $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+\mathrm{k}$
If $x-1$ is a factor of $p(x)$, then $p(1)=0$
$\Rightarrow(1)^{2}+(1)+\mathrm{k}=0$
$\Rightarrow 1+1+\mathrm{k}=0$
$\Rightarrow 2+\mathrm{k}=0$
$\Rightarrow \mathrm{k}=-2$
(ii) $p(x)=2 x^{2}+k x+\sqrt{2}$

If $(x-1)$ is a factor of $p(x)$ then $p(1)=0$
$\Rightarrow 2(1)^{2}+\mathrm{k}(1)+\sqrt{2}=0$
$\Rightarrow 2+\mathrm{k}+\sqrt{2}=0$
$\mathrm{k}=-(2+\sqrt{2})$
(iii) $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-\sqrt{2} \mathrm{x}+1$

If $(x-1)$ is a factor of $p(x)$ then $p(1)=0$
$\mathrm{k}(1)^{2}-\sqrt{2}(1)+1=0$
$\Rightarrow \mathrm{k}-\sqrt{2}+1=0$
$\mathrm{k}=\sqrt{2}-1$
(iv) $p(x)=k x^{2}-3 x+k$

If $(x-1)$ is a factor of $p(x)$ then $p(1)=0$
$\Rightarrow \mathrm{k}(1)^{2}-3(1)+\mathrm{k}=0$
$2 \mathrm{k}=3$
$\mathrm{k}=3 / 2$

Q4. Factorise :
(i) $12 \mathrm{x}^{2}-7 \mathrm{x}+1$
(ii) $2 \mathrm{x}^{2}+7 \mathrm{x}+3$
(iii) $6 x^{2}+5 x-6$
(iv) $3 x^{2}-x-4$

Sol. (i) $12 \mathrm{x}^{2}-7 \mathrm{x}+1$
$=12 x^{2}-4 x-3 x+1$
$=4 \mathrm{x}(3 \mathrm{x}-1)-1(3 \mathrm{x}-1)$
$=(3 x-1)(4 x-1)$
(ii) $2 \mathrm{x}^{2}+7 \mathrm{x}+3$
$=2 x^{2}+6 x+x+3$
$=2 x(x+3)+1(x+3)$
$=(\mathrm{x}+3)(2 \mathrm{x}+1)$
(iii) $6 x^{2}+5 x-6=6 x^{2}+9 x-4 x-6$
$=3 \mathrm{x}(2 \mathrm{x}+3)-2(2 \mathrm{x}+3)$
$=(3 \mathrm{x}-2)(2 \mathrm{x}+3)$
(iv) $3 x^{2}-x-4=3 x^{2}-4 x+3 x-4$
$=x(3 x-4)+1(3 x-4)$
$=(\mathrm{x}+1)(3 \mathrm{x}-4)$

Q5. Factorise :
(i) $\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2$
(ii) $x^{3}-3 x^{2}-9 x-5$
(iii) $x^{3}+13 x^{2}+32 x+20$
(iv) $2 y^{3}+y^{2}-2 y-1$

Sol. (i) $x^{3}-2 x^{2}-x+2$
Let $p(x)=x^{3}-2 x^{2}-x+2$
By trial, we find that

$$
\begin{aligned}
\mathrm{p}(1) & =(1)^{3}-2(1)^{2}-(1)+2 \\
& =1-2-1+2=0
\end{aligned}
$$

\therefore By factor Theorem, $(\mathrm{x}-1)$ is a factor of $\mathrm{p}(\mathrm{x})$.
Now, $x^{3}-2 x^{2}-x+2$
$=x^{2}(x-1)-x(x-1)-2(x-1)$
$=(\mathrm{x}-1)\left(\mathrm{x}^{2}-\mathrm{x}-2\right)$
$=(x-1)\left(x^{2}-2 x+x-2\right)$
$=(\mathrm{x}-1)\{\mathrm{x}(\mathrm{x}-2)+1(\mathrm{x}-2)\}$
$=(x-1)(x-2)(x+1)$
(ii) $x^{3}-3 x^{2}-9 x-5$

Let $p(x)=x^{3}-3 x^{2}-9 x-5$
By trial, we find

$$
\begin{aligned}
& \mathrm{p}(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5 \\
& =-1-3+9-5=0
\end{aligned}
$$

$\therefore \quad$ By Factor Theorem, $\mathrm{x}-(-1)$ or $\mathrm{x}+1$ is factor of $\mathrm{p}(\mathrm{x})$
Now, $x^{3}-3 x^{2}-9 x-5$

$$
=x^{2}(x+1)-4 x(x+1)-5(x+1)
$$

$$
=(x+1)\left(x^{2}-4 x-5\right)
$$

$$
=(x+1)\left(x^{2}-5 x+x-5\right)
$$

$$
=(x+1)\{x(x-5)+1(x-5)\}
$$

$$
=(\mathrm{x}+1)^{2}(\mathrm{x}-5)
$$

(iii) $\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20$

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20$
By trial, we find
$\mathrm{p}(-1)=(-1)^{3}+13(-1)^{2}+32(-1)+20$
$=-1+13-32+20=0$
\therefore By Factor theorem, $\mathrm{x}-(-1), \mathrm{x}+1$ is a factor of $\mathrm{p}(\mathrm{x})$

$$
\begin{aligned}
& \quad \mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20 \\
& =\mathrm{x}^{2}(\mathrm{x}+1)+12(\mathrm{x})(\mathrm{x}+1)+20(\mathrm{x}+1) \\
& =(\mathrm{x}+1)\left(\mathrm{x}^{2}+12 \mathrm{x}+20\right) \\
& =(\mathrm{x}+1)\left(\mathrm{x}^{2}+2 \mathrm{x}+10 \mathrm{x}+20\right) \\
& =(\mathrm{x}+1)\{\mathrm{x}(\mathrm{x}+2)+10(\mathrm{x}+2)\} \\
& =(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+10) \\
& \text { (iv) } 2 \mathrm{y}^{3}+\mathrm{y}^{2}-2 \mathrm{y}-1 \\
& \mathrm{p}(\mathrm{y})=2 \mathrm{y}^{3}+\mathrm{y}^{2}-2 \mathrm{y}-1
\end{aligned}
$$

By trial, we find that

$$
p(1)=2(1)^{3}+(1)^{2}-2(1)-1=0
$$

$\therefore \quad$ By Factor theorem, $(y-1)$ is a factor of $p(y)$

$$
\begin{aligned}
& 2 \mathrm{y}^{3}+\mathrm{y}^{2}-2 \mathrm{y}-1 \\
& =2 \mathrm{y}^{2}(\mathrm{y}-1)+3 \mathrm{y}(\mathrm{y}-1)+1(\mathrm{y}-1) \\
& =(\mathrm{y}-1)\left(2 \mathrm{y}^{2}+3 \mathrm{y}+1\right) \\
& =(\mathrm{y}-1)\left(2 \mathrm{y}^{2}+2 \mathrm{y}+\mathrm{y}+1\right) \\
& =(\mathrm{y}-1)\{2 \mathrm{y}(\mathrm{y}+1)+1(\mathrm{y}+1)\} \\
& =(\mathrm{y}-1)(2 \mathrm{y}+1)(\mathrm{y}+1)
\end{aligned}
$$

