Å

CLASS IX: MATHS Chapter 6: Lines And Angles

Questions and Solutions | Exercise 6.1 - NCERT Books

Q1. In figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.

Sol.	$\angle AOC = \angle BOD$	[Vertically opposite angles]
	$\Rightarrow \angle AOC = 40^{\circ}$	[:: $\angle BOD = 40^\circ$ is given]
	Now, $\angle AOC + \angle BOE = 70^{\circ}$	[Given]
	$\Rightarrow 40^{\circ} + \angle BOE = 70^{\circ}$	
	$\Rightarrow \angle BOE = 30^{\circ}$	
	$\angle AOE + \angle BOE = 180^{\circ}$	[Linear pair of angles]
	$\Rightarrow \angle AOE + 30^\circ = 180^\circ$	
	$\Rightarrow \angle AOE = 150^{\circ}$	
	$\Rightarrow \angle AOC + \angle COE = 150^{\circ}$	
	$\Rightarrow 40^{\circ} + \angle \text{COE} = 150^{\circ}$	
	$\Rightarrow \angle \text{COE} = 110^{\circ}$	
	Reflex $\angle COE = 360^{\circ} - 110^{\circ} =$	250°

Q2. In figure, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a : b = 2 : 3, find c.

***Saral**

www.esaral.com

***Saral**

Å

Sol. Ray OP stands on line XY $\angle POX + \angle POY = 180^{\circ}$ $\angle POX + 90^\circ = 180^\circ$ $\angle POX = 90^{\circ}$ $\angle POM + \angle XOM = 90^{\circ}$ $a + b = 90^{\circ}$ (1) a:b=2:3 $\frac{a}{2} = \frac{b}{3} = k \quad (let)$ a = 2k, b = 3k $3k + 2k = 90^{\circ}$ from (1) $k = 18^{\circ}$ $\Rightarrow a = 36^{\circ}, b = 54^{\circ}$: Ray OX stands on line MN \angle XOM + \angle XON = 180° $b + c = 180^{\circ}$ $54^{\circ} + c = 180^{\circ} \Rightarrow c = 126^{\circ}$

Q3. In figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

Sol. $\angle PQR = \angle PRQ = x$ (say) Now, $\angle PQS + \angle PQR = 180^{\circ}$ and $\angle PRT + \angle PRQ = 180^{\circ}$ $\Rightarrow \angle PQS + \angle PQR = \angle PRT + \angle PRQ$ $\Rightarrow \angle PQS + x = \angle PRT + x$ $\Rightarrow \angle PQS = \angle PRT$

[Linear pair of angles] [Linear pair of angles] [:: each = 180°] [By (1)]

Q4. In figure, if x + y = w + z, then prove that AOB is a line.

Class IX Maths

www.esaral.com

<mark>∛S</mark>aral

- Sol. x + y = w + z ...(1) $x + y + w + z = 360^{\circ}$ [Complete angle] $\Rightarrow 2(x + y) = 360^{\circ}, x + y = 180^{\circ}$ [From (1)] $\Rightarrow AOB \text{ is a line.}$
- Q5. In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} (\angle QOS \angle POS)$.

Sol.
$$\angle POR = \angle QOR = 90^{\circ}$$
 ...(1)
[$\because OR \perp PQ$ at O]
Now, $\angle QOS = \angle QOR + \angle ROS$
 $\Rightarrow \angle QOS = 90^{\circ} + \angle ROS$...(2) {by (1)}
 $\angle POS + \angle ROS = \angle POR$
 $\Rightarrow \angle POS = \angle POR - \angle ROS$
 $\Rightarrow \angle POS = 90^{\circ} - \angle ROS$...(3) {by (1)}
Subtracting (3) from (2),
 $\angle QOS - \angle POS = \{90^{\circ} + \angle ROS\} - \{90^{\circ} - \angle ROS\}$
 $= 2 \times \angle ROS$
 $\Rightarrow 2 \times \angle ROS = \{\angle QOS - \angle POS\}$
i.e., $\angle ROS = \frac{1}{2} \{\angle QOS - \angle POS\}$

Q6. It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. if ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.

∛Saral

www.esaral.com