## CLASS IX: MATHS

## Chapter 6: Lines And Angles

## Questions and Solutions | Exercise 6.2 - NCERT Books

Q1. In figure, if $\mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| \mathrm{EF}$ and $\mathrm{y}: \mathrm{z}=3: 7$, find x .


Sol. $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{CD} \| \mathrm{EF}$
$\Rightarrow \mathrm{AB} \| \mathrm{EF}$
$\Rightarrow \mathrm{x}=\mathrm{z} \quad$ (Alternate angles)
Now, $x+y=180^{\circ}$
(Pair of interior angles on the same side of the transversal)
$\Rightarrow \mathrm{z}+\mathrm{y}=180^{\circ}$ i.e, $\mathrm{y}+\mathrm{z}=180^{\circ}$
Also, we are given that, $\mathrm{y}: \mathrm{z}=3: 7$
Then, $\mathrm{y}=\frac{3}{10} \times 180^{\circ}=54^{\circ}$
and $\mathrm{z}=\frac{7}{10} \times 180^{\circ}=126^{\circ}$
We have $\mathrm{x}=\mathrm{z}=126^{\circ}$
Therefore, $\mathrm{x}=126^{\circ}$
Q2. In figure, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{FE} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.


Sol. $\mathrm{AB} \| \mathrm{CD}$
[given]
$\angle \mathrm{AGE}=\angle \mathrm{GED}=126^{\circ}$
[Alternate angles]
$\Rightarrow \angle \mathrm{GEF}+90^{\circ}=126^{\circ}$
$\angle \mathrm{GEF}=36^{\circ}$
$\angle \mathrm{GEC}+\angle \mathrm{GEF}+\angle \mathrm{FED}=180^{\circ} \quad$ [Straight line]
$\angle \mathrm{GEC}+126^{\circ}=180^{\circ}$
$\angle \mathrm{GEC}=180^{\circ}-126^{\circ}=54^{\circ}$
$\angle \mathrm{FGE}=\angle \mathrm{GEC}=54^{\circ} \quad$ [Alternate angles]
Q3. In figure, if $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.


Sol. Through R, we draw XRY \| PQ.


$$
\begin{aligned}
& \Rightarrow \mathrm{XRY} \| \mathrm{ST} \quad(\because \mathrm{PR} \| \mathrm{ST}) \\
& \angle \mathrm{QRX}+110^{\circ}=180^{\circ} \\
& \text { and } \angle \mathrm{YRS}+130^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{QRX}=70^{\circ} \\
& \text { and } \angle \mathrm{YRS}=50^{\circ} \\
& \text { Now, } \angle \mathrm{QRX}+\angle \mathrm{QRS}+\angle \mathrm{YRS}=180^{\circ} \\
& \Rightarrow 70^{\circ}+\angle \mathrm{QRS}+50^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{QRS}=60^{\circ}
\end{aligned}
$$

Q4. In figure, if $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y .


Sol. $\mathrm{AB} \| \mathrm{CD}$
$\mathrm{x}=\angle \mathrm{APQ}=50^{\circ}$
$\angle \mathrm{APQ}+\mathrm{y}=\angle \mathrm{PRD}=127^{\circ}$
$50^{\circ}+\mathrm{y}=127^{\circ}$
$y=127^{\circ}-50^{\circ}=77^{\circ}$
Q5. In figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B , the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along $C D$. Prove that $A B \| C D$.


Sol. We draw $\mathrm{BE} \perp \mathrm{RS}$, then BE is also $\perp \mathrm{PQ}$
$(\because \mathrm{PQ} \| \mathrm{RS})$
We draw $\mathrm{CF} \perp \mathrm{PQ}$. Here, also $\mathrm{CF} \perp \mathrm{RS}$


Here, if we consider PQ as transversal intersecting lines BE and CF, then each pair of corresponding angles is equal. (each equal to $90^{\circ}$ )
Thus, we have BE $\|$ CF.
Now, $\angle \mathrm{ABE}=\angle \mathrm{CBE}$
$($ Angle of incidence $=$ Angle of reflection)
$\Rightarrow \angle \mathrm{ABE}=\angle \mathrm{CBE}=\frac{1}{2} \times \angle \mathrm{ABC}$
Similarly, $\angle \mathrm{BCF}=\angle \mathrm{FCD}=\frac{1}{2} \times \angle \mathrm{DCB}$
Now, BE || CF

$$
\begin{aligned}
& \Rightarrow \angle \mathrm{CBE}=\angle \mathrm{BCF} \quad \quad \text { (alternate angles) } \\
& \Rightarrow \frac{1}{2} \times \angle \mathrm{ABC}=\frac{1}{2} \times \angle \mathrm{DCB}\{\text { by (1) and }(2)\} \\
& \Rightarrow \angle \mathrm{ABC}=\angle \mathrm{DCB} \\
& \Rightarrow \mathrm{AB} \| \mathrm{CD}
\end{aligned}
$$

