CLASS IX: MATHS
 Chapter 7: Triangles

Questions and Solutions | Exercise 7.1-NCERT Books

Q1. In quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisects $\angle \mathrm{A}$. Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$. What can you say about BC and BD ?

Sol. Given : In quadrilateral $\mathrm{ACBD}, \mathrm{AC}=\mathrm{AD}$ and AB bisect $\angle \mathrm{A}$.
To prove : $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$
Proof : In $\triangle A B C$ and $\triangle A B D$
$\mathrm{AC}=\mathrm{AD}$
(Given)
$\mathrm{AB}=\mathrm{AB}$
(Common)
$\angle \mathrm{CAB}=\angle \mathrm{DAB} \quad(\mathrm{AB}$ bisect $\angle \mathrm{A})$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \quad$ (by SAS criteria)
$\mathrm{BC}=\mathrm{BD} \quad$ (by CPCT)
Q2. ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$. Prove that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
(ii) $\mathrm{BD}=\mathrm{AC}$
(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$.

Sol. In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BAC}$,
$\mathrm{AD}=\mathrm{BC} \quad$ (Given)
$\angle \mathrm{DAB}=\angle \mathrm{CBA} \quad$ (Given)
$\mathrm{AB}=\mathrm{AB} \quad$ (Common side)
\therefore By SAS congruence rule, we have
$\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
Also, by CPCT, we have
$\mathrm{BD}=\mathrm{AC}$ and $\angle \mathrm{ABD}=\angle \mathrm{BAC}$

Q3. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$. Show that $C D$ bisects $A B$.

Sol. Given : AD and BC are equal perpendiculars to line AB .
To prove : CD bisect AB
Proof : In $\triangle \mathrm{OAD}$ and $\triangle \mathrm{OBC}$
$\mathrm{AD}=\mathrm{BC}$
$\angle \mathrm{OAD}=\angle \mathrm{OBC}$
$\angle \mathrm{AOD}=\angle \mathrm{BOC}$
$\triangle \mathrm{OAD} \cong \triangle \mathrm{OBC}$
$\mathrm{OA}=\mathrm{OB}$
$\therefore \mathrm{CD}$ bisect AB .
Q4. ℓ and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$.

Sol. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$
$\angle \mathrm{CAB}=\angle \mathrm{ACD} \quad$ (Pair of alternate angle)
$\angle \mathrm{BCA}=\angle \mathrm{DAC} \quad$ (Pair of alternate angle)
$\mathrm{AC}=\mathrm{AC} \quad$ (Common side)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA} \quad$ (ASA criteria)
Q5. Line ℓ is the bisector of an angle $\angle \mathrm{A}$ and B is any point on ℓ. BP and BQ are perpendiculars from B to the arms of $\angle \mathrm{A}$. Show that :

(i) $\Delta \mathrm{APB} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle \mathrm{A}$.

Sol. Given : line ℓ is bisector of angle A and B is any point on ℓ. BP and BQ are perpendicular from B to arms of $\angle \mathrm{A}$.
To prove : (i) $\Delta \mathrm{APB} \cong \Delta \mathrm{AQB}$ (ii) $\mathrm{BP}=\mathrm{BQ}$.
Proof :
(i) In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$

$\angle \mathrm{BAP}=\angle \mathrm{BAQ}$	$(\ell$ is bisector)
$\mathrm{AB}=\mathrm{AB}$	(common)
$\angle \mathrm{BPA}=\angle \mathrm{BQA}$	(Each $\left.90^{\circ}\right)$
$\therefore \triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$	(AAS rule)

(ii) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$
$\mathrm{BP}=\mathrm{BQ}$
(By CPCT)
Q6. In figure, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$. Show that $\mathrm{BC}=\mathrm{DE}$.

Sol. Given : $\mathrm{AC}=\mathrm{AE}$
$\mathrm{AB}=\mathrm{AD}$,
$\angle \mathrm{BAD}=\angle \mathrm{EAC}$
To prove : $\mathrm{BC}=\mathrm{DE}$
Proof: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$
$\mathrm{AB}=\mathrm{AD}$
(Given)
$\mathrm{AC}=\mathrm{AE}$
(Given)
$\angle \mathrm{BAD}=\angle \mathrm{EAC}$
Add $\angle \mathrm{DAC}$ to both
$\Rightarrow \angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{DAC}+\angle \mathrm{EAC}$
$\angle \mathrm{BAC}=\angle \mathrm{DAE}$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ADE} \quad$ (SAS rule)
$\mathrm{BC}=\mathrm{DE}$
(By CPCT)
Q7. $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that
$\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$. Show that
(i) $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$
(ii) $\mathrm{AD}=\mathrm{BE}$

Sol. $\angle \mathrm{EPA}=\angle \mathrm{DPB}$
$\Rightarrow \angle \mathrm{EPA}+\angle \mathrm{DPE}=\angle \mathrm{DPB}+\angle \mathrm{DPE}$
$\Rightarrow \angle \mathrm{APD}=\angle \mathrm{BPE}$
Now, in $\triangle \mathrm{DAP}$ and $\triangle \mathrm{EBP}$, we have
$\mathrm{AP}=\mathrm{PB}$
$(\because \mathrm{P}$ is mid point of AB$)$
$\angle \mathrm{PAD}=\angle \mathrm{PBE}$
$\left\{\begin{array}{l}\because \angle \mathrm{PAD}=\angle \mathrm{BAD}, \angle \mathrm{PBE}=\angle \mathrm{ABE} \\ \text { and we are given that } \angle \mathrm{BAD}=\angle \mathrm{ABE}\end{array}\right\}$
Also, $\angle \mathrm{APD}=\angle \mathrm{BPE}$
(By 1)
$\therefore \triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$
(By ASA congruence)
$\Rightarrow \mathrm{AD}=\mathrm{BE}$
(By CPCT)
Q8. In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B$. C is joined to M and produced to a point D such that $\mathrm{DM}=\mathrm{CM}$. Point D is joined to point B . Show that :

(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle.
(iii) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$
(iv) $\mathrm{CM}=\frac{1}{2} \mathrm{AB}$

Sol. (i) In $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$,

$\mathrm{AM}=\mathrm{BM}$	$(\because \mathrm{M}$ is mid point of AB$)$
$\angle \mathrm{AMC}=\angle \mathrm{BMD}$	(Vertically opposite angles)
$\mathrm{CM}=\mathrm{DM}$	(Given)
$\therefore \triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$	(By SAS congruence)

(ii) $\angle \mathrm{AMC}=\angle \mathrm{BMD}$,
$\Rightarrow \angle \mathrm{ACM}=\angle \mathrm{BDM}$
(By CPCT)
$\Rightarrow \mathrm{CA} \| \mathrm{BD}$
$\Rightarrow \angle \mathrm{BCA}+\angle \mathrm{DBC}=180^{\circ}$
$\Rightarrow \angle \mathrm{DBC}=90^{\circ}$
$\left(\because \angle \mathrm{BCA}=90^{\circ}\right)$
(iii) In $\triangle \mathrm{DBC}$ and $\triangle \mathrm{ACB}$,

$$
\begin{array}{ll}
\mathrm{DB}=\mathrm{AC} & (\because \Delta \mathrm{BMD} \cong \triangle \mathrm{AMC}) \\
\angle \mathrm{DBC}=\angle \mathrm{ACB} & \left(\text { Each }=90^{\circ}\right) \\
\mathrm{BC}=\mathrm{BC} & (\text { Common side }) \\
\therefore \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} & (\text { By SAS congruence })
\end{array}
$$

(iv) In $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} \Rightarrow \mathrm{CD}=\mathrm{AB}$

Also, $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
$\Rightarrow \mathrm{CM}=\mathrm{DM}$
$\Rightarrow \mathrm{CM}=\mathrm{DM}=\frac{1}{2} \mathrm{CD}$
$\Rightarrow \mathrm{CD}=2 \mathrm{CM} . .(2)$
From (1) and (2),
$2 \mathrm{CM}=\mathrm{AB}$
$\Rightarrow \mathrm{CM}=\frac{1}{2} \mathrm{AB}$

