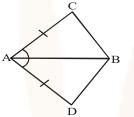
Å

CLASS IX: MATHS Chapter 7: Triangles

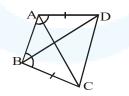
Questions and Solutions | Exercise 7.1 - NCERT Books

Q1. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?



Sol. Given : In quadrilateral ACBD, AC = AD and AB bisect $\angle A$. To prove : $\triangle ABC \cong \triangle ABD$ Proof : In $\triangle ABC$ and $\triangle ABD$ AC = AD (Given) AB = AB (Common) $\angle CAB = \angle DAB$ (AB bisect $\angle A$) $\therefore \triangle ABC \cong \triangle ABD$ (by SAS criteria) BC = BD (by CPCT)

- Q2. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that
 - (i) $\triangle ABD \cong \triangle BAC$ (ii) BD = AC(iii) $\angle ABD = \angle BAC$.



Sol. In \triangle ABD and \triangle BAC,

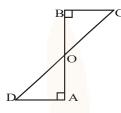
AD = BC (Given) ∠DAB = ∠CBA (Given) AB = AB (Common side) ∴ By SAS congruence rule, we have $\Delta ABD \cong \Delta BAC$ Also, by CPCT, we have BD = AC and ∠ABD = ∠BAC

www.esaral.com

<mark>∛S</mark>aral

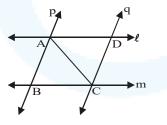
Å

Q3. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.



Sol. Given : AD and BC are equal perpendiculars to line AB. To prove : CD bisect AB Proof : In $\triangle OAD$ and $\triangle OBC$ AD = BC (Given) $\angle OAD = \angle OBC$ (Each 90°) $\angle AOD = \angle BOC$ (Vertically opposite angles) $\triangle OAD \cong \triangle OBC$ (AAS rule) OA = OB (by CPCT) \therefore CD bisect AB.

Q4. ℓ and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\Delta ABC \cong \Delta CDA$.



Sol. In $\triangle ABC$ and $\triangle CDA$

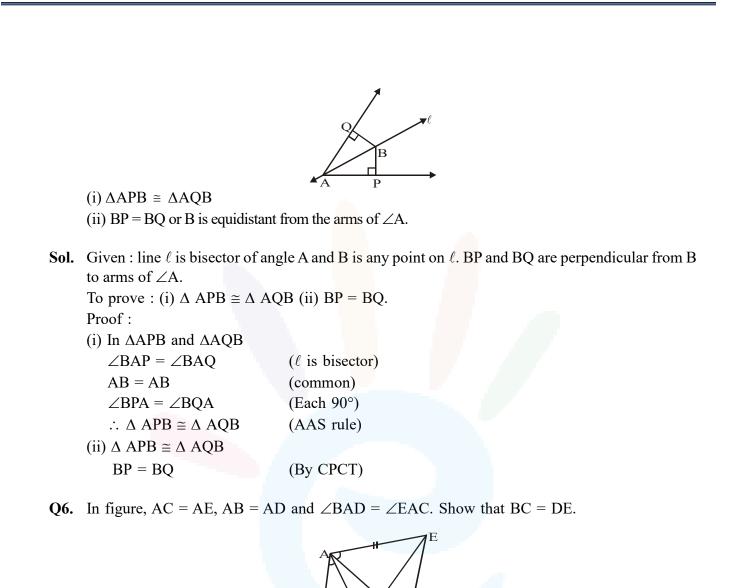
 $\angle CAB = \angle ACD$ (Pair of alternate angle) $\angle BCA = \angle DAC$ (Pair of alternate angle)AC = AC(Common side) $\therefore \ \Delta ABC \cong \Delta CDA$ (ASA criteria)

Q5. Line ℓ is the bisector of an angle $\angle A$ and B is any point on ℓ . BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that :

www.esaral.com

Å

∛Saral



Sol. Given :
$$AC = AE$$

 $AB = AD$,
 $\angle BAD = \angle EAC$
To prove : $BC = DE$
Proof : In $\triangle ABC$ and $\triangle ADE$
 $AB = AD$ (Given)
 $AC = AE$ (Given)
 $\angle BAD = \angle EAC$
 $Add \angle DAC$ to both

www.esaral.com

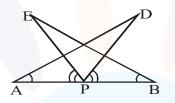
<mark>∛</mark>Saral

Å

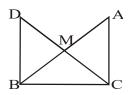
 $\Rightarrow \angle BAD + \angle DAC = \angle DAC + \angle EAC$ $\angle BAC = \angle DAE$ $\Delta ABC \cong \Delta ADE \qquad (SAS rule)$ $BC = DE \qquad (By CPCT)$

Q7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that

 $\angle BAD = \angle ABE \text{ and } \angle EPA = \angle DPB.$ Show that (i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE



- **Sol.** $\angle EPA = \angle DPB$ (Given) $\Rightarrow \angle EPA + \angle DPE = \angle DPB + \angle DPE$ $\Rightarrow \angle APD = \angle BPE$...(1) Now, in $\triangle DAP$ and $\triangle EBP$, we have AP = PB(:: P is mid point of AB) $\angle PAD = \angle PBE$ $(:: \angle PAD = \angle BAD, \angle PBE = \angle ABE$ and we are given that $\angle BAD = \angle ABE$ Also, $\angle APD = \angle BPE$ (By 1) $\therefore \Delta DAP \cong \Delta EBP$ (By ASA congruence) $\Rightarrow AD = BE$ (By CPCT)
- **Q8.** In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that :



∛Saral

Å

(i) $\triangle AMC \cong \triangle BMD$ (ii) $\angle DBC$ is a right angle. (iii) $\triangle DBC \cong \triangle ACB$ (iv) $CM = \frac{1}{2} AB$

```
Sol. (i) In \triangleAMC \cong \triangleBMD,
            AM = BM
                                                   (:: M is mid point of AB)
            \angle AMC = \angle BMD
                                                   (Vertically opposite angles)
            CM = DM
                                                   (Given)
            \therefore \Delta AMC \cong \Delta BMD
                                                   (By SAS congruence)
       (ii) \angle AMC = \angle BMD,
        \Rightarrow \angle ACM = \angle BDM
                                                   (By CPCT)
       \Rightarrow CA || BD
        \Rightarrow \angle BCA + \angle DBC = 180^{\circ}
        \Rightarrow \angle DBC = 90^{\circ}
                                                   (:: \angle BCA = 90^\circ)
       (iii) In \triangleDBC and \triangleACB,
            DB = AC
                                                   (:: \triangle BMD \cong \triangle AMC)
                                                   (Each = 90^{\circ})
            \angle DBC = \angle ACB
            BC = BC
                                                   (Common side)
            \therefore \Delta DBC \cong \Delta ACB (By SAS congruence)
       (iv) In \triangle DBC \cong \triangle ACB \implies CD = AB ...(1)
            Also, \triangle AMC \cong \triangle BMD
        \Rightarrow CM = DM
       \Rightarrow CM = DM = \frac{1}{2} CD
        \Rightarrow CD = 2 CM ...(2)
       From (1) and (2),
       2 \text{ CM} = \text{AB}
       \Rightarrow CM = \frac{1}{2} AB
```