Å

CLASS IX: MATHS Chapter 7: Triangles

Questions and Solutions | Exercise 7.2 - NCERT Books

- **Q1.** In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that : (i) OB = OC (ii) AO bisects $\angle A$.
- **Sol.** (i) In $\triangle ABC$, OB and OC are bisectors of $\angle B$ and $\angle C$.

$$\therefore \angle OBC = \frac{1}{2} \angle B \qquad \dots(1)$$

$$\angle OCB = \frac{1}{2} \angle C \qquad \dots(2)$$
Also, AB = AC (Given)

$$\Rightarrow \angle B = \angle C \qquad \dots(3)$$
From (1), (2), (3), we have

$$\angle OBC = \angle OCB$$
Now, in $\triangle OBC$, we have

$$\angle OBC = \angle OCB$$

$$\Rightarrow OB = OC$$
(Sides opposite to equal angles are equal)
(ii) $\angle OBA = \frac{1}{2} \angle B$ and $\angle OCA = \frac{1}{2} \angle C$

$$\Rightarrow \angle OBA = \angle OCA \qquad (\because \angle B = \angle C)$$

AB = AC and OB = OC

- $\therefore \Delta OAB \cong \Delta OAC$ (SAS congruence criteria)
- $\Rightarrow \angle OAB = \angle OAC$
- \Rightarrow AO bisects \angle A.
- **Q2.** In $\triangle ABC$, AD is the perpendicular bisector of BC. Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

www.esaral.com

Å

<mark>∛S</mark>aral

Sol. Given : In $\triangle ABC$, AD is perpendicular bisector of BC. To Prove : $\triangle ABC$ is isosceles \triangle with AB = AC Proof : In $\triangle ADB$ and $\triangle ADC$ $\angle ADB = \angle ADC$ (Each 90°) DB = DC (AD is \perp bisector of BC) AD = AD (Common) $\triangle ADB \cong \triangle ADC$ (By SAS rule) AB = AC (By CPCT) $\therefore \triangle ABC$ is an isosceles \triangle with AB = AC

Q3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Show that these altitudes are equal.

Sol. In \triangle ABE and \triangle ACF, we have

$\angle BEA = \angle CFA$	$(Each = 90^{\circ})$
$\angle A = \angle A$	(Common angle)
AB = AC	(Given)
$\therefore \Delta ABE \cong \Delta ACF$	(By AAS congruence criteria)
\Rightarrow BE = CF	(By CPCT)

Q4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (See figure). Show that (i) $\triangle ABE \cong \triangle ACF$

(ii) AB = AC, i.e., ABC is an isosceles triangle.

www.esaral.com

∛Saral

Å

Sol. (i) In $\triangle ABE$ and $\triangle ACF$, we have $\angle A = \angle A$ (Common) $\angle AEB = \angle AFC$ (Each = 90°) BE = CF (Given) $\therefore \triangle ABE \cong \triangle ACF$ (By ASA congruence) (ii) $\triangle ABE \cong \triangle ACF$ $\Rightarrow AB = AC$ (By CPCT)

Q5. ABC and DBC are two isosceles triangles on the same base BC (see figure). Show that $\angle ABD = \angle ACD$.

Sol. Given : ABC and BCD are two isosceles triangle on common base BC. To prove : $\angle ABC = \angle ACD$ Proof : ABC is an isosceles Triangle on base BC $\therefore \angle ABC = \angle ACB$...(1) \therefore DBC is an isosceles \triangle on base BC. $\angle DBC = \angle DCB$...(2) Adding (1) and (2) $\angle ABC + \angle DBC = \angle ACB + \angle DCB$ $\Rightarrow \angle ABD = \angle ACD$

Q6. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see figure). Show that $\angle BCD$ is a right angle.

<mark>∛</mark>Saral

Å

Q7. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Sol. In $\triangle ABC$

AB = AC $\angle B = \angle C$...(1) (angles opposite to equal sides are equal) In $\triangle ABC$ $\angle A + \angle B + \angle C = 180^{\circ}$ 90° + $\angle B + \angle C = 180^{\circ}$

$$\angle B + \angle C = 90^{\circ} \qquad \dots(2)$$

from (1) and (2)
$$\angle B = \angle C = 45^{\circ}$$

∛Saral

Q8. Show that the angles of an equilateral triangle are 60° each.

```
Sol. \triangle ABC is equilateral triangle.

\Rightarrow AB = BC = CA

Now, AB = BC

\Rightarrow BA = BC

\Rightarrow \angle C = \angle A \dots (1)

Similarly, \angle A = \angle B \dots (2)

From (1) and (2),

\angle A = \angle B = \angle C \dots (3)

Also, \angle A + \angle B + \angle C = 180^{\circ} \dots (4)
```

```
\Rightarrow \angle A = \angle B = \angle C = \frac{1}{3} \times 180^\circ = 60^\circ
```