CLASS IX: MATHS

Chapter 7: Triangles

Questions and Solutions | Exercise 7.2 - NCERT Books

Q1. In an isosceles triangle ABC , with $\mathrm{AB}=\mathrm{AC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at O. Join A to O. Show that : (i) $\mathrm{OB}=\mathrm{OC}$ (ii) AO bisects $\angle \mathrm{A}$.

Sol. (i) In $\triangle \mathrm{ABC}, \mathrm{OB}$ and OC are bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

$$
\begin{align*}
& \therefore \angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{~B} \tag{1}\\
& \angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{C} \tag{2}\\
& \mathrm{Also}, \mathrm{AB}=\mathrm{AC} \tag{Given}\\
& \Rightarrow \angle \mathrm{~B}=\angle \mathrm{C} \tag{3}
\end{align*}
$$

From (1), (2), (3), we have
$\angle \mathrm{OBC}=\angle \mathrm{OCB}$
Now, in $\triangle \mathrm{OBC}$, we have
$\angle \mathrm{OBC}=\angle \mathrm{OCB}$
$\Rightarrow \mathrm{OB}=\mathrm{OC}$
(Sides opposite to equal angles are equal)
(ii) $\angle \mathrm{OBA}=\frac{1}{2} \angle \mathrm{~B}$ and $\angle \mathrm{OCA}=\frac{1}{2} \angle \mathrm{C}$
$\Rightarrow \angle \mathrm{OBA}=\angle \mathrm{OCA}$
$(\because \angle \mathrm{B}=\angle \mathrm{C})$
$\mathrm{AB}=\mathrm{AC}$ and $\mathrm{OB}=\mathrm{OC}$
$\therefore \triangle \mathrm{OAB} \cong \triangle \mathrm{OAC}$ (SAS congruence criteria)
$\Rightarrow \angle \mathrm{OAB}=\angle \mathrm{OAC}$
$\Rightarrow \mathrm{AO}$ bisects $\angle \mathrm{A}$.

Q2. In $\triangle A B C, A D$ is the perpendicular bisector of $B C$. Show that $\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$.

Sol. Given : In $\triangle A B C, A D$ is perpendicular bisector of $B C$.
To Prove : $\triangle \mathrm{ABC}$ is isosceles Δ with $\mathrm{AB}=\mathrm{AC}$
Proof: In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$
(Each 90°)
$\mathrm{DB}=\mathrm{DC}$
(AD is \perp bisector of BC)
$\mathrm{AD}=\mathrm{AD}$
(Common)
$\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(By SAS rule)
$\mathrm{AB}=\mathrm{AC}$
(By CPCT)
$\therefore \triangle \mathrm{ABC}$ is an isosceles Δ with $\mathrm{AB}=\mathrm{AC}$

Q3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Show that these altitudes are equal.

Sol. In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACF}$, we have
$\angle \mathrm{BEA}=\angle \mathrm{CFA} \quad\left(\right.$ Each $\left.=90^{\circ}\right)$
$\angle \mathrm{A}=\angle \mathrm{A} \quad$ (Common angle)
$\mathrm{AB}=\mathrm{AC} \quad$ (Given)
$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \quad$ (By AAS congruence criteria)
$\Rightarrow \mathrm{BE}=\mathrm{CF} \quad$ (By CPCT)

Q4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (See figure). Show that (i) $\quad \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., ABC is an isosceles triangle.

Sol. (i) In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACF}$, we have

$$
\begin{array}{ll}
\angle \mathrm{A}=\angle \mathrm{A} & (\text { Common }) \\
\angle \mathrm{AEB}=\angle \mathrm{AFC} & \left(\text { Each }=90^{\circ}\right) \\
\mathrm{BE}=\mathrm{CF} & (\text { Given }) \\
\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}(\text { By ASA congruence })
\end{array}
$$

(ii) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
$\Rightarrow \mathrm{AB}=\mathrm{AC}$
(By CPCT)

Q5. ABC and DBC are two isosceles triangles on the same base BC (see figure). Show that $\angle \mathrm{ABD}=\angle \mathrm{ACD}$.

Sol. Given : ABC and BCD are two isosceles triangle on common base BC .
To prove : $\angle \mathrm{ABC}=\angle \mathrm{ACD}$
Proof : ABC is an isosceles
Triangle on base BC
$\therefore \angle \mathrm{ABC}=\angle \mathrm{ACB}$
$\because \mathrm{DBC}$ is an isosceles Δ on base BC .

$$
\begin{equation*}
\angle \mathrm{DBC}=\angle \mathrm{DCB} \tag{2}
\end{equation*}
$$

Adding (1) and (2)
$\angle \mathrm{ABC}+\angle \mathrm{DBC}=\angle \mathrm{ACB}+\angle \mathrm{DCB}$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ACD}$

Q6. $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side BA is produced to D such that $A D=A B$ (see figure). Show that $\angle B C D$ is a right angle.

Sol. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{ABC}$
In $\triangle \mathrm{ACD}$,
$\mathrm{AD}=\mathrm{AB}$
(By construction)
$\Rightarrow \mathrm{AD}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{ACD}=\angle \mathrm{ADC}$
Adding (1) and (2),
$\angle \mathrm{ACB}+\angle \mathrm{ACD}=\angle \mathrm{ABC}+\angle \mathrm{ADC}$
$\Rightarrow \angle \mathrm{BCD}=\angle \mathrm{ABC}+\angle \mathrm{ADC}$
In $\angle \mathrm{DBC}+\angle \mathrm{ABC}+\angle \mathrm{BCD}+\angle \mathrm{CDB}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=90^{\circ}$

Q7. ABC is a right angled triangle in which $\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$. Find $\angle \mathrm{B}$ and $\angle \mathrm{C}$.
Sol. In $\triangle \mathrm{ABC}$
$\mathrm{AB}=\mathrm{AC}$
$\angle \mathrm{B}=\angle \mathrm{C}$
(angles opposite to equal sides are equal)
In $\triangle \mathrm{ABC}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$90^{\circ}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}$
from (1) and (2)
$\angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$

Q8. Show that the angles of an equilateral triangle are 60° each.

Sol. $\triangle \mathrm{ABC}$ is equilateral triangle.
$\Rightarrow \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
Now, $\mathrm{AB}=\mathrm{BC}$
$\Rightarrow \mathrm{BA}=\mathrm{BC}$
$\Rightarrow \angle \mathrm{C}=\angle \mathrm{A}$

Similarly, $\angle \mathrm{A}=\angle \mathrm{B}$
From (1) and (2),
$\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}$
Also, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\frac{1}{3} \times 180^{\circ}=60^{\circ}$

