CLASS IX: MATHS

Chapter 8: Quadrilaterals

Questions and Solutions | Exercise 8.2 - NCERT Books

Q1. $A B C D$ is a quadrilateral in which P, Q, R and S are mid points of the sides $A B, B C, C D$ and DA (fig.) AC is a diagonal. Show that
(i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=1 / 2 \mathrm{C}$
(ii) $P Q=S R$
(iii) PQRS is a parallelogram.

Sol. Given : ABCD is a quadrilateral in which $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are mid-points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and $\mathrm{DA} . \mathrm{AC}$ is a diagonal.

To prove : (i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
(ii) $\mathrm{PQ}=\mathrm{SR}$
(iii) $P Q R S$ is a parallelogram.

Proof : (i) In $\triangle \mathrm{DAC}$,
$\because \quad \mathrm{S}$ is the mid-point of DA and R is the mid-point of DC
$\therefore \quad \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC} \quad$ [By Mid-point theorem]
(ii) In $\triangle \mathrm{BAC}$,
$\because \quad \mathrm{P}$ is the mid-point of AB and Q is the mid-point of BC
$\therefore \quad \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
[By Mid-point theorem]
But from (i) $\mathrm{SR}=\frac{1}{2} \mathrm{AC} \&$ (ii) $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
$\Rightarrow \quad \mathrm{PQ}=\mathrm{SR}$
$\begin{array}{lll}\text { (iii) } & \mathrm{PQ} \| \mathrm{AC} & \text { [From (ii)] } \\ & \mathrm{SR} \| \mathrm{AC} & \text { [From (i)] } \\ \therefore & \mathrm{PQ} \| \mathrm{SR} & \end{array}$
[Two lines parallel to the same line are parallel to each other]
Also, $\mathrm{PQ}=\mathrm{SR}$
[From (ii)]
$\therefore \quad \mathrm{PQRS}$ is a parallelogram.
[A quadrilateral is a parallelogram if a pair of opposite sides is parallel and is of equal length]

Q2. $A B C D$ is a rhombus and P, Q, R and S are the mid points of sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rectangle.

Sol. Given : P, Q, R and S are the mid-points of respective sides AB, BC, CD and DA of rhombus. $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP are joined.
To prove : PQRS is a rectangle.
Construction : Join A and C.

Proof: In $\triangle A B C, P$ is the mid-point of $A B$ and Q is the mid-point of $B C$.
$\therefore \quad \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
In $\triangle \mathrm{ADC}, \mathrm{R}$ is the mid-point of CD and S is the mid-point of AD .
$\therefore \quad \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
From eq. (i) and (ii), $P Q \| S R$ and $P Q=S R$
$\therefore \quad$ PQRS is a parallelogram.
Now ABCD is a rhombus
$\therefore \quad \mathrm{AB}=\mathrm{BC}$
$\Rightarrow \quad \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{BC} \Rightarrow \mathrm{PB}=\mathrm{BQ}$
$\therefore \quad \angle 1=\angle 2$ [Angles opposite to equal sides are equal]
Now in triangles APS and CQR, we have,
$\mathrm{AP}=\mathrm{CQ} \quad[\mathrm{P}$ and Q are the mid-points of
and $B C$ and $A B=B C]$
Similarly, AS = CR and PS = QR
[Opposite sides of a parallelogram]
$\therefore \quad \Delta \mathrm{APS} \cong \Delta \mathrm{CQR} \quad$ [By SSS congruency]
$\Rightarrow \quad \angle 3=\angle 4 \quad$ [By C.P.C.T.]
Now, we have $\angle 1+\angle \mathrm{SPQ}+\angle 3=180^{\circ}$
and $\quad \angle 2+\angle \mathrm{PQR}+\angle 4=180^{\circ}$
$\therefore \quad \angle 1+\angle \mathrm{SPQ}+\angle 3=\angle 2+\angle \mathrm{PQR}+\angle 4$
Since $\angle 1=\angle 2$ and $\angle 3=\angle 4$ [Proved above]

$$
\begin{equation*}
\therefore \quad \angle \mathrm{SPQ}=\angle \mathrm{PQR} \tag{iii}
\end{equation*}
$$

Now PQRS is a parallelogram [Proved above]
$\therefore \quad \angle \mathrm{SPQ}+\angle \mathrm{PQR}=180^{\circ}$
[Interior angles]
Using eq. (iii) and (iv),

$$
\begin{aligned}
& \angle \mathrm{SPQ}+\angle \mathrm{SPQ}=180^{\circ} \\
\Rightarrow \quad & 2 \angle \mathrm{SPQ}=180^{\circ} \Rightarrow \angle \mathrm{SPQ}=90^{\circ}
\end{aligned}
$$

Hence, PQRS is a rectangle.
Q3. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rhombus.

Sol. Given : A rectangle $A B C D$ in which P, Q, R and S are the mid-points of the sides $A B$, BC, CD and DA respectively. $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP are joinned.

To prove : PQRS is a rhombus.

Construction : Join AC.
Proof: In $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are the mid-points of sides AB, BC respectively.
$\therefore \quad \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
In $\triangle \mathrm{ADC}, \mathrm{R}$ and S are the mid-points of sides CD, AD respectively.
$\therefore \quad \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
From eq.(i) and (ii), $\mathrm{PQ} \| \mathrm{SR}$ and $\mathrm{PQ}=\mathrm{SR}$
$\therefore \quad$ PQRS is a parallelogram.
Now ABCD is a rectangle. [Given]

$$
\begin{array}{ll}
\therefore & \mathrm{AD}=\mathrm{BC} \\
\Rightarrow & \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC} \Rightarrow \quad \mathrm{AS}=\mathrm{BQ} \tag{iv}
\end{array}
$$

In triangles APS and BPQ,

$$
\begin{array}{lll}
& \mathrm{AP}=\mathrm{BP} & {[\mathrm{P} \text { is the mid-point of } \mathrm{AB}]} \\
& \angle \mathrm{PAS}=\angle \mathrm{PBQ} & {\left[\text { Each } 90^{\circ}\right]} \\
\text { and } & \mathrm{AS}=\mathrm{BQ} & {[\text { From eq. (iv) }]} \\
\therefore & \Delta \mathrm{APS} \cong \triangle \mathrm{BPQ} & {[\text { By SAS congruency }]} \\
\Rightarrow \quad & \mathrm{PS}=\mathrm{PQ} & {[\text { By C.P.C.T. }]} \tag{v}
\end{array}
$$

From eq.(iii) and (v), we get that PQRS is a parallelogram.
$\Rightarrow \quad \mathrm{PS}=\mathrm{PQ}$
$\Rightarrow \quad$ Two adjacent sides are equal.
Hence, PQRS is a rhombus.
Q4. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}, \mathrm{BD}$ is a diagonal and E is the mid-point of $\mathrm{AD} . \mathrm{A}$ line is drawn through E parallel to $A B$ intersecting $B C$ at F (fig.). Show that F is the midpoint of BC.

Sol. Line $\ell \| \mathrm{AB}$ and passes through E.

Line ℓ meets BC in F and BD in G .
In $\triangle \mathrm{ABD}, \mathrm{E}$ is mid-point of AD and $\mathrm{EG} \| \mathrm{AB}$.
$\Rightarrow G$ is mid-point of $B D$.
Also, $\ell \| \mathrm{AB}$ and $\mathrm{AB}\|\mathrm{CD} \Rightarrow \ell\| \mathrm{CD}$
$\Rightarrow \mathrm{F}$ is mid-point of $\mathrm{BC} . \quad[\because \mathrm{G}$ is mid-point of BD$]$

Q5. In a parallelogram $\mathrm{ABCD}, \mathrm{E}$ and F are the mid-points of sides AB and CD respectively (fig.). Show that the line segments AF and EC trisect the diagonal BD .

Sol. Since E and F are the mid-points of AB and CD respectively.
Given : $A B C D$ is a parallelogram. E and F are midpoints of $A B$ and $A C$ respectively.

To prove : $\mathrm{DP}=\mathrm{PQ}=\mathrm{QB}$
Proof : -
$\therefore \quad \mathrm{AE}=\frac{1}{2} \mathrm{AB}$ and $\mathrm{CF}=\frac{1}{2} \mathrm{CD}$
But ABCD is a parallelogram.
$\therefore \quad \mathrm{AB}=\mathrm{CD}$ and $\mathrm{AB} \| \mathrm{DC}$
$\Rightarrow \quad \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}$ and $\mathrm{AB} \| \mathrm{DC}$
$\Rightarrow \quad \mathrm{AE}=\mathrm{FC}$ and $\mathrm{AE} \| \mathrm{FC} \quad$ [From eq. (i)]
$\therefore \quad$ AECF is a parallelogram.
$\Rightarrow \quad \mathrm{FA}\|\mathrm{CE} \quad \Rightarrow \mathrm{FP}\| \mathrm{CQ}$
[FP is a part of FA and CQ is a part of CE]
Since the line segment drawn through the mid-point of one side of a triangle and parallel to
the other side bisects the third side.
In $\triangle \mathrm{DCQ}, \mathrm{F}$ is the mid-point of CD and
$\Rightarrow \quad \mathrm{FP} \| \mathrm{CQ}$
$\therefore \quad P$ is the is mid-point of $D Q$.
$\Rightarrow \quad \mathrm{DP}=\mathrm{PQ}$
Similarly, In $\triangle \mathrm{ABP}, \mathrm{E}$ is the mid-point of AB and
$\Rightarrow \quad E Q \| A P$
$\therefore \quad \mathrm{Q}$ is the mid-point of BP .
$\Rightarrow \quad B Q=P Q$
From eq.(iii) and (iv),

$$
\begin{equation*}
\mathrm{DP}=\mathrm{PQ}=\mathrm{BQ} \tag{v}
\end{equation*}
$$

Now, $\mathrm{BD}=\mathrm{BQ}+\mathrm{PQ}+\mathrm{DP}=\mathrm{BQ}+\mathrm{BQ}+\mathrm{BQ}=3 \mathrm{BQ}$
$\Rightarrow \quad \mathrm{BQ}=\frac{1}{3} \mathrm{BD}$

From eq (v) and (vi), $\mathrm{DP}=\mathrm{PQ}=\mathrm{BQ}=\frac{1}{3} \mathrm{BD}$
$\Rightarrow \quad$ Points P and Q trisects BD . So AF and CE trisects BD .

Q6. ABC is a triangle right angled at C . A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D . Show that
(i) D is the mid-point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=1 / 2 \mathrm{AB}$

Sol. (i) Through M, we draw line $\ell \| B C$. ℓ intersects AC at D .
$\Rightarrow D$ is mid-point of $A C$.

(ii) $\angle \mathrm{ADM}=\angle \mathrm{ACB}=90^{\circ}$
[Corresponding angles]
$\Rightarrow \quad \angle \mathrm{ADM}=90^{\circ} \Rightarrow \mathrm{MD} \perp \mathrm{AC}$.
(iii) In $\triangle \mathrm{CMD}$ and $\triangle \mathrm{AMD}$;
$\mathrm{CD}=\mathrm{AD}, \mathrm{MD}=\mathrm{MD}$
and $\angle \mathrm{CDM}=\angle \mathrm{ADM}\left[\mathrm{Each}=90^{\circ}\right]$
Therefore, $\triangle \mathrm{CMD} \cong \triangle \mathrm{AMD}$
$\Rightarrow \quad \mathrm{CM}=\mathrm{AM}$; Also $\mathrm{AM}=1 / 2 \mathrm{AB}$.

