CLASS IX: MATHS

Chapter 9: Circles

Questions and Solutions | Exercise 9.1 - NCERT Books

Q1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

Sol. Given : Two congruent circles $\mathrm{C}(\mathrm{O}, \mathrm{r})$ and $\mathrm{C}\left(\mathrm{O}^{\prime}, \mathrm{r}\right)$ which have chords AB and CD respectively such that $A B=C D$.

To prove : $\angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D}$
Proof : From $\triangle \mathrm{AOB}$ and $\Delta \mathrm{CO}^{\prime} \mathrm{D}$, we have
$\mathrm{AB}=\mathrm{CD}$
[Given]
$\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{C}$
[Each equal to r]
$\mathrm{OB}=\mathrm{O}^{\prime} \mathrm{D}$
[Each equal to r]
$\therefore \quad \mathrm{AOB} \cong \triangle \mathrm{CO}^{\prime} \mathrm{D}$
[By SSS-congruence]
$\Rightarrow \angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D}$ [C.P.C.T.]

Q2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Sol. Given : Two congruent circle $\mathrm{C}(\mathrm{O}, \mathrm{r})$ and $\mathrm{C}\left(\mathrm{O}^{\prime}, \mathrm{r}\right)$ which have chords AB and CD respectively, such that $\angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D}$

To prove : $\mathrm{AB}=\mathrm{CD}$
Proof: In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{CO}^{\prime} \mathrm{D}$, we have :
$\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{C}$
[each equal to r]

$$
\begin{aligned}
& \quad \mathrm{OB}=\mathrm{O}^{\prime} \mathrm{D} \\
& \angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D} \\
& \therefore \quad \triangle \mathrm{AOB} \cong \triangle \mathrm{CO}^{\prime} \mathrm{D} \\
& \text { Hence, } \mathrm{AB}=\mathrm{CD}
\end{aligned}
$$

[each equal to r]
[given]
[by SAS - criterion]
[C.P.C.T.]

