## CLASS IX: MATHS

## Chapter 9: Circles

## Questions and Solutions | Exercise 9.3 - NCERT Books

Q1. In Fig. A, B and C are three points on a circle with centre O such that $\angle \mathrm{BOC}=30^{\circ}$ and $\angle \mathrm{AOB}$ $=60^{\circ}$. If D is a point on the circle other than the arc $\angle \mathrm{ABC}$, find $\angle \mathrm{ADC}$.


Sol. $\angle \mathrm{ADC}=\frac{1}{2} \angle \mathrm{AOC}=\frac{1}{2}\left(60^{\circ}+30^{\circ}\right)=45^{\circ}$

Q2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.


Sol. $\because \mathrm{OA}=\mathrm{OB}=\mathrm{AB} \quad$ [Given]
$\therefore \quad \triangle \mathrm{OAB}$ is equilateral
$\therefore \quad \angle \mathrm{AOB}=60^{\circ} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}$
[The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]

$$
=\frac{1}{2} \times 60=30^{\circ}
$$

$\because \quad \mathrm{ADBC}$ is a cyclic quadrilateral.
$\therefore \quad \angle \mathrm{ADB}+\angle \mathrm{ACB}=180^{\circ}$
[The sum of either pair of opposite angles of a cyclic quadrilateral is $180^{\circ}$ ]
$\Rightarrow \angle \mathrm{ADB}+30^{\circ}=180^{\circ} \Rightarrow \angle \mathrm{ADB}=180^{\circ}-30^{\circ}$
$\Rightarrow \angle \mathrm{ADB}=50^{\circ}$

Q3. In figure, $\angle \mathrm{PQR}=100^{\circ}$, where $\mathrm{P}, \mathrm{Q}$ and R are points on a circle with centre O . Find $\angle \mathrm{OPR}$.


Sol. Take a point $S$ in the major arc. Join PS and RS.

$\because \quad \mathrm{PQRS}$ is a cyclic quadrilateral.
$\therefore \quad \angle \mathrm{PQR}+\angle \mathrm{PSR}=180^{\circ}$
[The sum of either pair of opposite angles of a cyclic quadrilateral is $180^{\circ}$ ]
$\Rightarrow 100^{\circ}+\angle \mathrm{PSR}=180^{\circ} \Rightarrow \angle \mathrm{PSR}=180^{\circ}-100^{\circ}$
$\Rightarrow \angle \mathrm{PSR}=80^{\circ}$
Now $\angle \mathrm{PSR}=2 \angle \mathrm{PSR}$
[The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle]
$=2 \times 80^{\circ}=160^{\circ}$
[Using (i)]

In $\triangle \mathrm{OPR}$,
$\because \quad \mathrm{OP}=\mathrm{OR} \quad$ [radii of a circle]
$\therefore \quad \angle \mathrm{OPR}=\angle \mathrm{ORP} \ldots$ (3) $\quad$ [Angles opposite to equal sides of a triangle is $180^{\circ}$ ]
In $\triangle \mathrm{OPR}$,

$$
\begin{array}{ll}
\angle \mathrm{OPR}+\angle \mathrm{ORP}+\angle \mathrm{POR}=180^{\circ} & \text { [Sum of all the angles of a triangle is } \left.180^{\circ}\right] \\
\Rightarrow \angle \mathrm{OPR}+\angle \mathrm{OPR}+160^{\circ}=180^{\circ} & {[\text { Using (2) and (1)] }} \\
\Rightarrow 2 \angle \mathrm{OPR}+160^{\circ}=180^{\circ} & \\
\Rightarrow 2 \angle \mathrm{OPR}=180^{\circ}-160^{\circ}=20^{\circ} \\
\Rightarrow \angle \mathrm{OPR}=10^{\circ}
\end{array}
$$

Q4. In fig. $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$.


Sol. $\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ} \quad$ (By angle sum property)
$\Rightarrow 69^{\circ}+31^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=180^{\circ}-100^{\circ}=80^{\circ}$
Since, angles in the same segment are equal
$\angle \mathrm{BDC}=\angle \mathrm{BAC}, \angle \mathrm{BDC}=80^{\circ}$.
Q5. In figure, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four points on a circle. AC and BD intersect at a point E such that $\angle \mathrm{BEC}=130^{\circ}$ and $\angle \mathrm{ECD}=20^{\circ}$. Find $\angle \mathrm{BAC}$.


Sol. $\angle \mathrm{CED}+\angle \mathrm{BEC}=180^{\circ}$

$$
\begin{align*}
\Rightarrow & \angle \mathrm{CED}+130^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{CED}+180^{\circ}-130^{\circ}=50^{\circ}  \tag{i}\\
& \angle \mathrm{ECD}=20^{\circ} \tag{ii}
\end{align*}
$$

[Linear Pair]

In $\triangle \mathrm{CED}, \angle \mathrm{CED}+\angle \mathrm{ECD}+\angle \mathrm{CDE}=180^{\circ}$
[Sum of all the angles of a triangle is $180^{\circ}$ ]
$\Rightarrow 50^{\circ}+20^{\circ}+\angle \mathrm{CDE}=180^{\circ}$
[Using (i) and (ii)]
$\Rightarrow 70^{\circ}+\angle \mathrm{CDE}=180^{\circ}$
$\Rightarrow \angle \mathrm{CDE}=180^{\circ}-70^{\circ}$
$\Rightarrow \angle \mathrm{CDE}=110^{\circ}$
Now $\angle \mathrm{BAC}=\angle \mathrm{CDE}=110^{\circ}$
[Angle in the same segment of a circle are equal]

Q6. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}$, $\angle B A C=$ is $30^{\circ}$, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.

Sol.


Since angles in the same segment of a circle are equal
$\therefore \quad \angle \mathrm{BAC}=\mathrm{BDC}$
$\Rightarrow \mathrm{BDC}=30^{\circ}$
Also $\angle \mathrm{DBC}=70^{\circ} \quad$ (Given)
$\therefore$ In $\angle \mathrm{BCD}$, we have
$\Rightarrow \angle \mathrm{BCD}+\angle \mathrm{DBC}+\angle \mathrm{CDB}=180^{\circ} \quad$ [sum of angles of a triangle is $180^{\circ}$ ]
$\Rightarrow \angle \mathrm{BCD}+70^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=80^{\circ}$
Now, in $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{BC}$
(given)
$\therefore \quad \angle \mathrm{BCA}=\angle \mathrm{BAC}$
(angles opp. to equal sides of a triangle are equal)
$\Rightarrow \angle \mathrm{BCA}=30^{\circ}$
$\left[\angle \mathrm{BAC}=30^{\circ}\right]$
Now, $\angle \mathrm{BCA}+\angle \mathrm{ECD}=\angle \mathrm{BCD}$
$\Rightarrow 30^{\circ}+\angle \mathrm{ECD}=80^{\circ}$
$\Rightarrow \angle \mathrm{ECD}=50^{\circ}$

Q7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Sol. Since, AC and BD are diameters.
$\Rightarrow \mathrm{AC}=\mathrm{BD}$
[all diameters of a circle are equal]
Also, $\angle \mathrm{BAD}=90^{\circ}$

[angle formed in a semicircle is $90^{\circ}$ ]
Similarly, $\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{BCD}=90^{\circ}$
and $\angle \mathrm{CDA}=90^{\circ}$.
Now, in right $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$, we have

$$
\begin{array}{rll} 
& A C=B D & (\text { from (1)) }  \tag{1}\\
& A B=B A & \text { (common) } \\
& \angle \mathrm{ABC}=\angle \mathrm{BAD} & \text { (each equal to } 90^{\circ} \text { ) } \\
\therefore & \triangle \mathrm{ABC} \cong \triangle \mathrm{BAD} & \text { (By RHS congruence) } \\
\Rightarrow & \mathrm{BC}=\mathrm{AD} & (\mathrm{CPCT})
\end{array}
$$

Similarly, $\mathrm{AB}=\mathrm{DC}$
Thus, ABCD is a rectangle.

Q8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Sol. Given : ABCD is a trapezium whose two non-parallel sides AD and BC are equal.
To Prove : Trapezium ABCD is a cyclic.
Construction : Draw BE $\| \mathrm{AD}$

## Proof :

$\because \quad \mathrm{AB}|\mid \mathrm{DE}$
[Given]
$\mathrm{AD} \| \mathrm{BE}$
[By construction]
$\therefore$ Quadrilateral ABCD is a parallelogram.

$\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{BED}$
and $\mathrm{AD}=\mathrm{BE}$
But $\mathrm{AD}=\mathrm{BC}$
...(i) [Opp. $\angle \mathrm{s}$ of a $|\mid \mathrm{gm}]$
...(ii) [Opp. sides of a \| gm]
...(iii) [Given]

From (ii) and (iii)
$\mathrm{BE}=\mathrm{BC}$
$\therefore \quad \angle \mathrm{BEC}=\angle \mathrm{BCE} \quad$...(iv) $\quad$ [Angle opposite to equal sides]
$\angle \mathrm{BEC}+\angle \mathrm{BED}=180^{\circ} \quad$ [Linear pair]
$\Rightarrow \angle \mathrm{BCE}+\angle \mathrm{BAD}=180^{\circ} \quad[$ From (iv) and (i)]
$\Rightarrow$ Trapezium ABCD is cyclic.
[ $\because$ If a pair of opposite angles of a quadrilateral is $180^{\circ}$, then the quadrilateral is cyclic]

Q9. Two circles intersect at two points B and C. Through B, two line segment ABD and PBQ are drawn to intersect the circles at $\mathrm{A}, \mathrm{D}$ and $\mathrm{P}, \mathrm{Q}$ respectively. Prove that $\angle \mathrm{ACP}=\angle \mathrm{QCD}$.


Sol. Given : Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at $\mathrm{A}, \mathrm{D}$ and $\mathrm{P}, \mathrm{Q}$ respectively.
To Prove : $\angle \mathrm{ACP}=\angle \mathrm{QCD}$
Proof: $\angle \mathrm{ACP}=\angle \mathrm{ABP}$
...(i) [Angles in the same segment of a circle are equal]
$\angle \mathrm{QCD}=\angle \mathrm{QBD}$
...(ii) [Angles in the same segment of a circle are equal]
$\angle \mathrm{ABP}=\angle \mathrm{QBD}$
...(iii) [Vertically Opposite Angles]
From (i), (ii) and (iii),

$$
\angle \mathrm{ACP}=\angle \mathrm{QCD} .
$$

Q10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Sol. We have $\triangle \mathrm{ABC}$, and two circles described with diameter as AB and AC respectively. They intersect at a point D , other than A .
Let us join A and D.


AB is a diameter
$\therefore \quad \angle \mathrm{ADB}$ is an angle formed in a semicircle.
$\Rightarrow \angle \mathrm{ADB}=90^{\circ}$
Similarly, $\angle \mathrm{ADC}=90^{\circ}$
adding (1) and (2) $\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$
i.e., $\mathrm{B}, \mathrm{D}$ and C are collinear points BC is a straight line. Thus, D lies on BC .

Q11. ABC and ADC are two right triangles with common hypotenuse AC . Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$.
Sol. AC is a hypotenuse
$\angle \mathrm{ADC}=90^{\circ}=\angle \mathrm{ABC}$
$\therefore$ Both the triangles are in the same semicircle.
$\Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are concyclic.
Join BD
DC is chord
$\therefore \quad \angle \mathrm{CAD}$ and $\angle \mathrm{CBD}$ are formed on the same segment

$\therefore \quad \angle \mathrm{CAD}=\angle \mathrm{CBD}$

Q12. Prove that a cyclic parallelogram is a rectangle.
Sol. We have a cyclic parallelogram ABCD.
$\therefore$ Sum of its opposite angles is $180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
But $\angle \mathrm{A}=\angle \mathrm{C}$
From (1) and (2), we have

$$
\angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}
$$

Similarly, $\angle \mathrm{B}=\angle \mathrm{D}=90^{\circ}$

$\Rightarrow$ Each angle of the parallelogram ABCD is $90^{\circ}$
Thus, ABCD is a rectangle.

