∛Saral

CLASS IX: MATHS Chapter 11: Surface Areas and Volume

Questions and Solutions | Exercise 11.2 - NCERT Books

Q1.	Find the surface area of a sphere of radius : (i) 10.5cm (ii) 5.6 cm (iii) 14 cm		
Sol.		$= 4 \times \frac{22}{7} \times (10.5)^2 \text{ cm}^2$ $= 1386 \text{ cm}^2$	
	(ii) Surface area	$= 4 \times \frac{22}{7} \times 5.6 \times 5.6 \text{ cm}^2$ = 394.24 cm ²	
		$= 4 \times \frac{22}{7} \times 14 \times 14 \text{ cm}^2$	
	$= 2464 \text{ cm}^2$		
Q2.	Find the surface ar (i) 14 cm.	ea of a sphere of diameter (ii) 21 cm	(iii) 3.5 m
Sol.	(i) Diameter = 14 c	cm	
	$\therefore \text{ Radius (r)} = \frac{14}{2} \text{ cm} = 7 \text{ cm}$		
	:. Surface area = $4\pi r^2 = 4 \times \frac{22}{7} \times (7)^2 = 616 \text{ cm}^2$.		
	(ii) Diameter = 21 cm \therefore Radius (r) = $\frac{21}{2}$ cm = 10.5 cm		
	:. Surface area = $4\pi r^2 = 4 \times \frac{22}{7} \times (10.5)^2 = 1385.4 \text{ cm}^2$.		
	(ii) Diameter = 3.5 m		
	:. Radius (r) = $\frac{3.5}{2}$ cm = 1.75 cm		

www.esaral.com

∛Saral

Å

:. Surface area = $4\pi r^2 = 4 \times \frac{22}{7} \times (1.75)^2 = 38.4 \text{ m}^2$

- Q3. Find the total surface area of a hemisphere of radius 10 cm. (Use $\pi = 3.14$)
- **Sol.** r = 10 cm.
 - \therefore Total surface area of the hemisphere = $3\pi r^2 = 3 \times 3.14 \times (10)^2 = 942 \text{ cm}^2$.
- Q4. The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
- **Sol.** $r_1 = 7 \text{ cm } \& r_2 = 14 \text{ cm}$ and let S_1 and S_2 be the surface areas of respective spheres.

$$\frac{\mathbf{S}_1}{\mathbf{S}_2} = \frac{4\pi r_1^2}{4\pi r_2^2} = \frac{\mathbf{r}_1^2}{\mathbf{r}_2^2} = \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^2$$

Ans. 1 : 4

- **Q5.** A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of Rs 16 per 100 cm².
- **Sol.** Inner diameter = 10.5 cm, Radius = $\frac{105}{20}$ cm

Curved surface area of a hemisphere = $2\pi r^2$

:. Inner curved surface area of hemispherical bowl

$$= 2 \times \frac{22}{7} \times \frac{105}{20} \times \frac{105}{20} \operatorname{cm}^2 = \frac{17325}{100} \operatorname{cm}^2$$

Cost of tinplating for $100 \text{ cm}^2 = \text{Rs} 16$

 $\therefore \quad \text{Cost of tinplating for } \frac{17325}{100} \text{ cm}^2$

$$= \operatorname{Rs} \frac{16}{100} \times \frac{17325}{100}$$
$$= \operatorname{Rs} \frac{277200}{100 \times 100} = \operatorname{Rs} 27.72$$

Class IX Maths

www.esaral.com

<mark>∛S</mark>aral

Å

Sol. $4\pi r^2 = 154 \Rightarrow 4 \times \frac{22}{7} \times r^2 = 154$

$$\Rightarrow$$
 r² = $\frac{7 \times 7}{4}$ \Rightarrow r = $\frac{7}{2}$ cm, i.e., r = 3.5 cm

- **Q7.** The diameter of the moon is approximately one fourth of the diameter of the earth. Find the ratio of their surface areas.
- Sol. Let d_1 and d_2 be the diameters of the moon and the earth respectively and S_1 and S_2 be their respective surface areas.

$$d_1 = \frac{1}{4} d_2 \Longrightarrow \frac{d_1}{d_2} = \frac{1}{4} \Longrightarrow \frac{2r_1}{2r_2} = \frac{1}{4} \Longrightarrow \frac{r_1}{r_2} = \frac{1}{4}]$$
Ans. 1 : 16.

- **Q8.** A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. find the outer curved surface area of the bowl.
- Sol. r = 5 cm, thickness of steel sheet = 0.25 cm $\Rightarrow R = 5$ cm + 0.25 cm = 5.25 cm Outer curved surface area of the bowl = 2 πR^2

$$= 2 \times \frac{22}{7} \times \frac{525}{100} \times \frac{525}{100} \text{ cm}^2$$

$$= 173.25 \text{ cm}^2$$

- Q9. A right circular cylinder just encloses a sphere of radius r. Find
 - (i) Surface area of the sphere,
 - (ii) Curved surface area of the cylinder,
 - (iii) Ratio of the areas obtained in (i) and (ii).
- **Sol.** Radius of cylinder = radius of sphere = r Height of cylinder = $2 \times \text{radius of sphere} = 2r$] Ans. (i) $4 \pi r^2$ (ii) $4 \pi r^2$ (iii) 1 : 1.

www.esaral.com