CLASS IX: MATHS

Chapter 11: Surface Areas and Volume

Questions and Solutions | Exercise 11.2 - NCERT Books

Q1. Find the surface area of a sphere of radius :
(i) 10.5 cm
(ii) 5.6 cm
(iii) 14 cm

Sol. (i) Surface area $=4 \times \frac{22}{7} \times(10.5)^{2} \mathrm{~cm}^{2}$

$$
=1386 \mathrm{~cm}^{2}
$$

(ii) Surface area $=4 \times \frac{22}{7} \times 5.6 \times 5.6 \mathrm{~cm}^{2}$

$$
=394.24 \mathrm{~cm}^{2}
$$

(iii) Surface area $=4 \times \frac{22}{7} \times 14 \times 14 \mathrm{~cm}^{2}$

$$
=2464 \mathrm{~cm}^{2}
$$

Q2. Find the surface area of a sphere of diameter
(i) 14 cm .
(ii) 21 cm
(iii) 3.5 m

Sol. (i) Diameter $=14 \mathrm{~cm}$
$\therefore \quad$ Radius $(\mathrm{r})=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
$\therefore \quad$ Surface area $=4 \pi \mathrm{r}^{2}=4 \times \frac{22}{7} \times(7)^{2}=616 \mathrm{~cm}^{2}$.
(ii) Diameter $=21 \mathrm{~cm}$
$\therefore \quad$ Radius $(\mathrm{r})=\frac{21}{2} \mathrm{~cm}=10.5 \mathrm{~cm}$
$\therefore \quad$ Surface area $=4 \pi \mathrm{r}^{2}=4 \times \frac{22}{7} \times(10.5)^{2}=1385.4 \mathrm{~cm}^{2}$.
(ii) Diameter $=3.5 \mathrm{~m}$
\therefore Radius $(\mathrm{r})=\frac{3.5}{2} \mathrm{~cm}=1.75 \mathrm{~cm}$
$\therefore \quad$ Surface area $=4 \pi \mathrm{r}^{2}=4 \times \frac{22}{7} \times(1.75)^{2}=38.4 \mathrm{~m}^{2}$

Q3. Find the total surface area of a hemisphere of radius 10 cm . (Use $\pi=3.14$)

Sol. $\mathrm{r}=10 \mathrm{~cm}$.
\therefore Total surface area of the hemisphere $=3 \pi \mathrm{r}^{2}=3 \times 3.14 \times(10)^{2}=942 \mathrm{~cm}^{2}$.

Q4. The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.

Sol. $\quad r_{1}=7 \mathrm{~cm} \mathrm{\&} \mathrm{r}_{2}=14 \mathrm{~cm}$ and let S_{1} and S_{2} be the surface areas of respective spheres.

$$
\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{4 \pi \mathrm{r}_{1}^{2}}{4 \pi \mathrm{r}_{2}^{2}}=\frac{\mathrm{r}_{1}^{2}}{\mathrm{r}_{2}^{2}}=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2}
$$

Ans. 1:4

Q5. A hemispherical bowl made of brass has inner diameter 10.5 cm . Find the cost of tin-plating it on the inside at the rate of Rs 16 per $100 \mathrm{~cm}^{2}$.

Sol. Inner diameter $=10.5 \mathrm{~cm}$, Radius $=\frac{105}{20} \mathrm{~cm}$
Curved surface area of a hemisphere $=2 \pi r^{2}$
\therefore Inner curved surface area of hemispherical bowl

$$
=2 \times \frac{22}{7} \times \frac{105}{20} \times \frac{105}{20} \mathrm{~cm}^{2}=\frac{17325}{100} \mathrm{~cm}^{2}
$$

Cost of tinplating for $100 \mathrm{~cm}^{2}=$ Rs 16
\therefore Cost of tinplating for $\frac{17325}{100} \mathrm{~cm}^{2}$
$=\operatorname{Rs} \frac{16}{100} \times \frac{17325}{100}$
$=$ Rs $\frac{277200}{100 \times 100}=$ Rs 27.72

Q6. Find the radius of a sphere whose surface area is $154 \mathrm{~cm}^{2}$
Sol. $\quad 4 \pi r^{2}=154 \Rightarrow 4 \times \frac{22}{7} \times r^{2}=154$
$\Rightarrow r^{2}=\frac{7 \times 7}{4} \Rightarrow r=\frac{7}{2} \mathrm{~cm}$, i.e., $\mathrm{r}=3.5 \mathrm{~cm}$

Q7. The diameter of the moon is approximately one fourth of the diameter of the earth. Find the ratio of their surface areas.

Sol. Let d_{1} and d_{2} be the diameters of the moon and the earth respectively and S_{1} and S_{2} be their respective surface areas.
$\left.\mathrm{d}_{1}=\frac{1}{4} \mathrm{~d}_{2} \Rightarrow \frac{\mathrm{~d}_{1}}{\mathrm{~d}_{2}}=\frac{1}{4} \Rightarrow \frac{2 \mathrm{r}_{1}}{2 \mathrm{r}_{2}}=\frac{1}{4} \Rightarrow \frac{\mathrm{r}_{\mathrm{i}}}{\mathrm{r}_{2}}=\frac{1}{4}\right]$
Ans. 1: 16.

Q8. A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm . find the outer curved surface area of the bowl.

Sol. $\quad \mathrm{r}=5 \mathrm{~cm}$, thickness of steel sheet $=0.25 \mathrm{~cm}$
$\Rightarrow \mathrm{R}=5 \mathrm{~cm}+0.25 \mathrm{~cm}=5.25 \mathrm{~cm}$
Outer curved surface area of the bowl $=2 \pi \mathrm{R}^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{525}{100} \times \frac{525}{100} \mathrm{~cm}^{2} \\
& =173.25 \mathrm{~cm}^{2}
\end{aligned}
$$

Q9. A right circular cylinder just encloses a sphere of radius r. Find
(i) Surface area of the sphere,
(ii) Curved surface area of the cylinder,
(iii) Ratio of the areas obtained in (i) and (ii).

Sol. Radius of cylinder $=$ radius of sphere $=r$
Height of cylinder $=2 \times$ radius of sphere $=2 r]$
Ans. (i) $4 \pi r^{2}$ (ii) $4 \pi r^{2}$ (iii) $1: 1$.

