CLASS IX: MATHS

Chapter 11: Surface Areas and Volume

Questions and Solutions | Exercise 11.3-NCERT Books

Q1. Find the volume of the right circular cone with
(i) radius 6 cm , height 7 cm
(ii) radius 3.5 cm , height 12 cm

Sol. (i) $\mathrm{r}=6 \mathrm{~cm}, \mathrm{~h}=7 \mathrm{~cm}$

$$
\text { Volume }=\frac{1}{3} \times \frac{22}{7} \times(6)^{2} \times 7 \mathrm{~cm}^{3}=264 \mathrm{~cm}^{3}
$$

(ii) $\mathrm{r}=\frac{7}{2} \mathrm{~cm}, \mathrm{~h}=12 \mathrm{~cm}$

$$
\text { Volume }=\frac{1}{3} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 12 \mathrm{~cm}^{3}=154 \mathrm{~cm}^{3}
$$

Q2. Find the capacity in litres of a conical vessel with
(i) radius 7 cm , slant height 25 cm .
(ii) height 12 cm , slant height 13 cm .

Sol. (i) $\mathrm{r}=7 \mathrm{~cm}, \ell=25 \mathrm{~cm}$

$$
\mathrm{r}^{2}+\mathrm{h}^{2}=\ell^{2}
$$

$\Rightarrow(7)^{2}+\mathrm{h}^{2}=(25)^{2} \Rightarrow \mathrm{~h}^{2}=(25)^{2}-(7)^{2}$
$\Rightarrow \mathrm{h}^{2}=625-49 \Rightarrow \mathrm{~h}^{2}=576$
$\Rightarrow \mathrm{h}=\sqrt{576} \quad \Rightarrow \mathrm{~h}=24 \mathrm{~cm}$
$\therefore \quad$ Capacity $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \times \frac{22}{7} \times(7)^{2} \times 24$

$$
=1232 \mathrm{~cm}^{3}=1.232 \ell
$$

(ii) $\mathrm{h}=12 \mathrm{~cm}, \ell=13 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{r}^{2}+\mathrm{h}^{2}=\ell^{2} \\
\Rightarrow & \mathrm{r}^{2}+(12)^{2}=(13)^{2} \Rightarrow \mathrm{r}^{2}+144=169 \\
\Rightarrow & \mathrm{r}^{2}=169-144 \Rightarrow \mathrm{r}^{2}=25 \\
\Rightarrow & \mathrm{r}=\sqrt{25} \quad \Rightarrow \mathrm{r}=5 \mathrm{~cm} \\
\therefore & \text { Capacity }=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \times \frac{22}{7} \times(5)^{2} \times 12 \\
& =\frac{2200}{7} \mathrm{~cm}^{3}=\frac{2200}{7000} \ell=\frac{11}{35} \ell .
\end{aligned}
$$

Q3. The height of a cone is 15 cm . If its volume is $1570 \mathrm{~cm}^{3}$, find the radius of the base. (Use $\pi=3.14$)

Sol. $\mathrm{h}=15 \mathrm{~cm}$, volume $=1570 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{3} \times 3.14 \times \mathrm{r}^{2} \times 15=1570 \\
& \Rightarrow \mathrm{r}^{2}=\frac{1570}{15.70}=100 \\
& \Rightarrow \mathrm{r}=10 \mathrm{~cm}
\end{aligned}
$$

Q4. If the volume of a right circular cone of height 9 cm is $48 \pi \mathrm{~cm}^{3}$, find the diameter of its base.

Sol. $\mathrm{h}=9 \mathrm{~cm}$, volume $=48 \pi \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \frac{1}{3} \pi \mathrm{r}^{2} \times \mathrm{h}=48 \pi \\
& \Rightarrow \quad \frac{1}{3} \mathrm{r}^{2} \times 9=48 \\
& \Rightarrow \mathrm{r}^{2}=16 \Rightarrow \mathrm{r}=4 \mathrm{~cm}
\end{aligned}
$$

Q5. A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?

Sol. For conical pit
Diameter $=3.5 \mathrm{~m}$
$\therefore \quad$ Radius $(\mathrm{r})=\frac{3.5}{2} \mathrm{~m}=1.75 \mathrm{~m}$

Depth (h) = 12 m
\therefore Capacity of the conical pit

$$
\begin{aligned}
& =\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \times \frac{22}{7} \times(1.75)^{2} \times 12 \mathrm{~m}^{3} \\
& =38.5 \mathrm{~m}^{3}=38.5 \times 1000 \ell=38.5 \mathrm{kl} .
\end{aligned}
$$

Q6. The volume of a right circular cone is $9856 \mathrm{~cm}^{3}$. If the diameter of the base is 28 cm , find
(i) height of the cone(ii) slant height of the cone (iii) curved surface area of the cone

Sol. (i) Volume $=9856 \mathrm{~cm}^{3}, \mathrm{r}=14 \mathrm{~cm}$
$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times(14)^{2} \times 4=9856$
$\Rightarrow \mathrm{h}=\frac{9856 \times 3}{22 \times 28} \mathrm{~cm} \Rightarrow \mathrm{~h}=48 \mathrm{~cm}$
(ii) $\ell^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}=(48)^{2}+(14)^{2}=2500$
$\Rightarrow \ell=50 \mathrm{~cm}$
(iii) Curved surface area $=\frac{22}{7} \times 14 \times 50 \mathrm{~cm}^{2}$

$$
=2200 \mathrm{~cm}^{2}
$$

Q7. A right triangle ABC with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is revolved about the side 12 cm . Find the volume of the solid so obtained.

Sol.

Radius, $\mathrm{r}=5 \mathrm{~cm}$; height, $\mathrm{h}=12 \mathrm{~cm}$ \& slant height, $\ell=13 \mathrm{~cm}]=\frac{1}{2} \pi 5^{2} \times 12=100 \pi$

Q8. If the triangle ABC in the question 7 above is revolved about the side 5 cm , then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in Question

7 and 8.

Sol.

Radius, $\mathrm{r}=12 \mathrm{~cm}$; height, $\mathrm{h}=5 \mathrm{~cm}$ \& slant height, $\ell=13 \mathrm{~cm}$]
Vol. $=\frac{1}{3} \pi 12^{2} \times 5=240 \pi$
Ans. $240 \pi \mathrm{~cm}^{3} ; 5: 12$.

Q9. A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is 3 m . Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.

Sol. \quad Diameter $=10.5 \mathrm{~m}$
\therefore Base Radius $(\mathrm{r})=\frac{10.5}{2} \mathrm{~m}=\frac{105}{20} \mathrm{~m}$
Height (h) $=3 \mathrm{~m}$
\therefore Volume of the heap $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times\left(\frac{105}{20}\right)^{2} \times 3 \\
& =86.625 \mathrm{~m}^{3}
\end{aligned}
$$

$\therefore \quad$ Area of the canvas $=\pi r \ell$
where, $\ell=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$

$$
\begin{aligned}
& =\sqrt{\left(\frac{10.5}{2}\right)^{2}+(3)^{2}}=\sqrt{\frac{110.25}{4}+9} \\
& =\sqrt{\frac{146.25}{4}}=6.046 \mathrm{~m} \text { (approx) }
\end{aligned}
$$

Now, $\pi \mathrm{r} \ell=\frac{22}{7} \times \frac{10.5}{2} \times 6.05 \mathrm{~m}^{2}$
$=11 \times 1.5 \times 6.05 \mathrm{~m}^{2}$
$=99.825 \mathrm{~m}^{2}$
Thus, the required area of the canvas is $99.825 \mathrm{~m}^{2}$

