Class X : MATH
 Chapter-1 : Real Number
 Questions \& Answers - Exercise : 1.2-NCERT Book

Q1. Prove that $\sqrt{5}$ is irrational.

Sol. Let us assume, to the contrary, that $\sqrt{5}$ is rational.
So, we can find coprime integers a and $b(\neq 0)$ such that

$$
\begin{aligned}
& \sqrt{5}=\frac{a}{b} \\
& \Rightarrow \quad \sqrt{5} b=a
\end{aligned}
$$

Squaring on both sides, we get

$$
5 b^{2}=\mathrm{a}^{2}
$$

Therefore, 5 divides a^{2}.
Therefore, 5, divides a
So, we can write $\mathrm{a}=5 \mathrm{c}$ for some integer c .
Substituting for a , we get

$$
\begin{aligned}
& 5 b^{2}=25 \mathrm{c}^{2} \\
\Rightarrow & \mathrm{~b}^{2}=5 \mathrm{c}^{2}
\end{aligned}
$$

This means that 5 divides b^{2}, and so 5 divides b .
Therefore, a and b have at least 5 as a common factor.
But this contradicts the fact that a and b have no common factor other than 1.
This contradiction arose because of our incorrect assumption that $\sqrt{5}$ is rational.
So, we conclude that $\sqrt{5}$ is irrational.

Q2. Prove that $3+2 \sqrt{5}$ is irrational.
Sol. Let us assume, to the contrary, that $3+2 \sqrt{5}$ is rational. That is, we can find coprime integers a and $b(b \neq 0)$ such that $3+2 \sqrt{5}=\frac{a}{b}$

Therefore, $\frac{a}{b}-3=2 \sqrt{5}$
$\Rightarrow \quad \frac{a-3 b}{b}=2 \sqrt{5}$
$\Rightarrow \frac{\mathrm{a}-3 \mathrm{~b}}{2 \mathrm{~b}}=\sqrt{5} \Rightarrow \frac{\mathrm{a}}{2 \mathrm{~b}}-\frac{3}{2}=\sqrt{5}$
Since a and b are integers, we get $\frac{\mathrm{a}}{2 \mathrm{~b}}-\frac{3}{2}$ is rational, and so $\frac{\mathrm{a}-3 \mathrm{~b}}{2 \mathrm{~b}}=\sqrt{5}$ is rational.
But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $3+2 \sqrt{5}$ is rational.
So, we conclude that $3+2 \sqrt{5}$ is irrational.

Q3. Prove that the following are irrationals :
(i) $\frac{1}{\sqrt{2}}$
(ii) $7 \sqrt{5}$
(iii) $6+\sqrt{2}$

Sol. (i) Let us assume, to the contrary, that $\frac{1}{\sqrt{2}}$ is rational. That is we can find coprime integers a and $b(b \neq 0)$ such that,
$\frac{1}{\sqrt{2}}=\frac{p}{q}$
Therefore, $\mathrm{q}=\sqrt{2} \mathrm{p}$
Squaring on both sides, we get
$q^{2}=2 p^{2}$
Therefore, 2 divides q^{2}
so, 2 divides q
so we can write $\mathrm{q}=2 \mathrm{r}$ for some integer r
squaring both sides, we get
$\mathrm{q}^{2}=4 \mathrm{r}^{2}$
From (i) \& (ii), we get
$2 \mathrm{p}^{2}=4 \mathrm{r}^{2}$
$\mathrm{p}^{2}=2 \mathrm{r}^{2}$

Therefore, 2 divides p^{2}
So, 2 divides p
So, $\mathrm{p} \& \mathrm{q}$ have atleast 2 as a common factor.
But this contradict the fact that $\mathrm{p} \& \mathrm{q}$ have no common factor other than 1 .
This contradict our assumption that $\frac{1}{\sqrt{2}}$ is rational. So, we condude that $\frac{1}{\sqrt{2}}$ is irrational.
(ii) Let us assume, to the contrary, that $7 \sqrt{5}$ is rational.

That is, we can find coprime integers a and $b(b \neq 0)$ such that $7 \sqrt{5}=\frac{a}{b}$
Therefore, $\frac{\mathrm{a}}{7 \mathrm{~b}}=\sqrt{5}$
Since a and b are integers, we get $\frac{\mathrm{a}}{7 \mathrm{~b}}$ is rational, and so $\frac{\mathrm{a}}{7 \mathrm{~b}}=\sqrt{5}$ is rational.
But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $7 \sqrt{5}$ is rational.
So, we conclude that $7 \sqrt{5}$ is irrational.
(iii) Let us assume, to the contrary, that $6+\sqrt{2}$ is rational.

That is, we can find coprime integers a and $b(b \neq 0)$ such that $6+\sqrt{2}=\frac{a}{b}$
Therefore, $\frac{a}{b}-6=\sqrt{2}$
$\Rightarrow \frac{\mathrm{a}-6 \mathrm{~b}}{\mathrm{~b}}=\sqrt{2}$
Since a and b are integers, we get $\frac{a}{b}-6$ is rational, and so $\frac{a-6 b}{b}=\sqrt{2}$ is rational.
But this contradicts the fact that $\sqrt{2}$ is irrational. This contradiction has arisen because of our incorrect assumption that
$6+\sqrt{2}$ is rational.
So, we conclude that $6+\sqrt{2}$ is irrational.

