Class X : MATH
 Chapter-2 : Polynomial Qusetions \& Answers - Exercise : 2.2 - NCERT Book

Q1. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $\mathrm{t}^{2}-15$
(vi) $3 x^{2}-x-4$

Sol. (i) $x^{2}-2 x-8=x^{2}-4 x+2 x-8$
$=x(x-4)+2(x-4)=(x+2)(x-4)$
Zeroes are -2 and 4 .
Sum of the zeros
$=(-2)+(4)=2=\frac{-(-2)}{1}=\frac{-(\text { Coefficient of } \mathrm{x})}{\left(\text { Coefficient of } \mathrm{x}^{2}\right)}$
Product of the zeros
$=(-2)(4)=-8=\frac{(-8)}{1}=\frac{(\text { Constant term })}{\left(\text { Coefficient of } \mathrm{x}^{2}\right)}$
(ii) $4 s^{2}-4 \mathrm{~s}+1=(2 \mathrm{~s}-1)^{2}$

The two zeros are $\frac{1}{2}, \frac{1}{2}$
Sum of the two zeros
$=\frac{1}{2}+\frac{1}{2}=1=\frac{-(-4)}{4}=\frac{-(\text { Coefficient of } \mathrm{x})}{\left(\text { Coefficient of } \mathrm{x}^{2}\right)}$
Product of two zeros

$$
=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}=\frac{(\text { Constant term })}{\left(\text { Coefficient of } \mathrm{x}^{2}\right)}
$$

(iii) $6 x^{2}-7 x-3$
$=6 \mathrm{x}^{2}-9 \mathrm{x}+2 \mathrm{x}-3$
$=3 \mathrm{x}(2 \mathrm{x}-3)+1(2 \mathrm{x}-3)$
$=(2 \mathrm{x}-3)(3 \mathrm{x}+1)$
zeros are $\frac{3}{2}, \frac{-1}{3}$
Sum of zeros $=\frac{3}{2}+\left(\frac{-1}{3}\right)$
$=\frac{9-2}{6}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeros
$=\frac{3}{2} \times\left(\frac{-1}{3}\right)=\frac{-1}{2}=\frac{-(3)}{6}$
$=\frac{(\text { constant term })}{\left(\text { coefficient of } \mathrm{x}^{2}\right)}$
(iv) $4 u^{2}+8 u=4 u(u+2)$
zeros are $0,-2$
Sum of zeros
$=0+(-2)=-2=\frac{-(8)}{4}$
$=-\frac{(\text { coefficient of } u)}{\left(\text { coefficient of } u^{2}\right)}$
Product of zeros
$=0 \times(-2)=0=\frac{0}{4}$
$=\frac{\text { constant term }}{\text { coefficient of } \mathrm{u}^{2}}$
(v) $\mathrm{t}^{2}-15=(\mathrm{t}-\sqrt{15})(\mathrm{t}+\sqrt{15})$
zeros are $\sqrt{15},-\sqrt{15}$
sum of zeros
$=\sqrt{15}+(-\sqrt{15})=0=\frac{0}{1}$
$=-\frac{(\text { coefficient of } t)}{\left(\text { coefficient of } t^{2}\right)}$
Product of zeros
$=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}$
$=\frac{\text { constant term }}{\text { coefficient oft }{ }^{2}}$
(vi) $3 x^{2}-x-4$
$=3 \mathrm{x}^{2}-4 \mathrm{x}+3 \mathrm{x}-4$
$=x(3 x-4)+1(3 x-4)$
$=(3 x-4)(x+1)$
zeros are $\frac{4}{3},-1$
Sum of zeros
$=\frac{4}{3}-1=\frac{1}{3}=-\frac{(-1)}{3}$
$=-\frac{(\text { coefficient of } \mathrm{x})}{\text { coefficient of } \mathrm{x}^{2}}$
Product of zeros $=\frac{4}{3} \times(-1)=-\frac{4}{3}$
$=\frac{(\text { constant term })}{\text { coefficient of } \mathrm{x}^{2}}$

Q2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeros respectively.
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) 1,1
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

Sol. (i) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=\mathrm{x}^{2}-\frac{1}{4} \mathrm{x}-1$
$=\frac{1}{4}\left(4 \mathrm{x}^{2}-\mathrm{x}-1\right)$.
(ii) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=x^{2}-\sqrt{2} x+\frac{1}{3}$
$=\frac{1}{3}\left(3 x^{2}-3 \sqrt{2} x+1\right)$.
(iii) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=\mathrm{x}^{2}-0 \mathrm{x}+\sqrt{5}$
$=\mathrm{x}^{2}+\sqrt{5}$.
(iv) Required polynomial $=$
$x^{2}-$ (sum of zeros) $x+$ product of zeros
$=x^{2}-1 x+1$
$=x^{2}-x+1$.
(v) Required polynomial $=$
$x^{2}-($ sum of zeros $) x+$ product of zeros
$=x^{2}-\left(-\frac{1}{4}\right) x+\frac{1}{4}$
$=\mathrm{x}^{2}+\frac{1}{4} \mathrm{x}+\frac{1}{4}$
$=\frac{1}{4}\left(4 \mathrm{x}^{2}+\mathrm{x}+1\right)$.
(vi) Required polynomial $=$
$x^{2}-($ sum of zeros $) x+$ product of zeros $=x^{2}-4 x+1$.

