Class X : MATH
 Chapter-8: Pair of Linear Equations in Two Variable Questions \& Solutions - Exercise - 3.1-NCERT Book

Q1. Form the pair of linear equations in the following problems, and find their solutions graphi cally.
(i) 10 students of class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.
(ii) 5 pencils and 7 pens together cost ${ }^{`} 50$, whereas 7 pencils and 5 pens together cost 46.

Find the cost of one pencil and that of one pen.
Sol. (i) Let the number of boys be x and the number of girls be y.
According to the given conditions
$x+y=10$ and $y=x+4$
We get the required pair of linear equations as
$\mathrm{x}+\mathrm{y}-10=0, \mathrm{x}-\mathrm{y}+4=0$

Graphical Solution
$\mathrm{x}+\mathrm{y}-10=0 \ldots$ (i)

x	2	5
$\mathrm{y}=10-\mathrm{x}$	8	5
$\mathrm{x}-\mathrm{y}+4=0$	\ldots (ii)	

x	2	4
$y=x+4$	6	8

From the graph, we have : $\mathrm{x}=3, \mathrm{y}=7$ common solution of the two linear equations. Hence, the number of boys $=3$ and the number of girls $=7$.
(ii) Let the cost of 1 pencil be Rs x and cost of 1 pen be Rs. y.
$5 x+7 y=50$
$7 x+5 y=46$
Graphical solution
$5 \mathrm{x}+7 \mathrm{y}=50^{\circ} 7 \mathrm{x}+5 \mathrm{x}=46$
$\mathrm{y}=\frac{50-5 \mathrm{x}}{7} \quad \mathrm{y}=\frac{46-7 \mathrm{x}}{5}$

x	3	10
y	5	0

x	3	-2
y	5	12

From the graph we have $\mathrm{x}=3, \mathrm{y}=5$.
Hence, cost of one pencil $=$ Rs. 3 and cost of one pen $=$ Rs. 5

Q2. On comparing the ratios $\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}$ and $\frac{c_{1}}{c_{2}}$, find out whether the lines representing the
following pairs of linear equations intersect at a point, are parallel or coincident.
(i) $5 \mathrm{x}-4 \mathrm{y}+8=0 ; 7 \mathrm{x}+6 \mathrm{y}-9=0$
(ii) $9 x+3 y+12=0 ; 18 x+6 y+24=0$
(iii) $6 x-3 y+10=0 ; 2 x-y+9=0$

Sol. (i) $5 x-4 y+8=0$
$7 x+6 y-9=0$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{5}{7}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-4}{6}=-\frac{2}{3} \quad \Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
\Rightarrow Lines represented by (i) and (ii) intersect at a point
(ii) $9 x+3 y+12=0$
$18 x+6 y+24=0$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{9}{18}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{3}{6}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{12}{24}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Lines represented by (i) and (ii) are coincident.
(iii) $6 x-3 y+10=0$
$2 x-y+9=0$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{6}{2}=\frac{3}{1}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-3}{-1}=\frac{3}{1}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{10}{9}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore Lines represented by (i) and (ii) are parallel

Q3. On comparing the ratios $\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}$ and $\frac{c_{1}}{c_{2}}$, find out whether the following pairs of linear equations are consistent, or inconsistent.
(i) $3 \mathrm{x}+2 \mathrm{y}=5 ; 2 \mathrm{x}-3 \mathrm{y}=7$
(ii) $2 x-3 y=8 ; 4 x-6 y=9$
(iii) $\frac{3}{2} x+\frac{5}{3} y=7 ; 9 x-10 y=14$
(iv) $5 \mathrm{x}-3 \mathrm{y}=11 ;-10 \mathrm{x}+6 \mathrm{y}=-22$
(v) $\frac{4}{3} x+2 y=8 ; 2 x+3 y=12$

Sol. (i) $3 x+2 y-5=0$
$2 x-3 y-7=0$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{3}{2} ; \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{-3}=-\frac{2}{3}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
\Rightarrow The equations have a unique solution.
Hence, consistent.
(ii) $2 x-3 y=8$
$4 x-6 y=9$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{4}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-3}{-6}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{8}{9}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The equations have no solution. Hence inconsistent.
(iii) $\frac{3}{2} x+\frac{5}{3} y=7$
$9 x-10 y=14$
$\frac{a_{1}}{a_{2}}=\frac{3 / 2}{9}=\frac{1}{6}, \frac{b_{1}}{b_{2}}=\frac{5 / 3}{-10}=\frac{-1}{6}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
\Rightarrow The equations have a unique solutions
Hence, consistent.
(iv) $5 x-3 y=11$
$-10 x+6 y=-22$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{5}{-10}=\frac{-1}{2}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-3}{6}=\frac{-1}{2}$,
$\frac{c_{1}}{c_{2}}=\frac{11}{-22}=\frac{-1}{2}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
The equations have infinite solutions.
Hence, consistent.
(v) $\frac{4}{3} x+2 y=8$
$2 x+3 y=12$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{4 / 3}{2}=\frac{2}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{3}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{8}{12}=\frac{2}{3}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
The equations have infinite solutions.
Hence, consistent.
Q4. Which of the following pairs of linear equations are consistent/inconsistent? If consistent, obtain the solution graphically :
(i) $x+y=5,2 x+2 y=10$
(ii) $x-y=8,3 x-3 y=16$
(iii) $2 \mathrm{x}+\mathrm{y}-6=0,4 \mathrm{x}-2 \mathrm{y}-4=0$
(iv) $2 \mathrm{x}-2 \mathrm{y}-2=0,4 \mathrm{x}-4 \mathrm{y}-5=0$

Sol. (i) $x+y=5$
$2 x+2 y=10$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{2}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{2}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-5}{-10}=\frac{1}{2}$
i.e., $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Hence, the pair of linear equations is consistent.
(i) and (ii) are same equations and hence the graph is coincident straight line.

x	1	3
$y=5-x$	4	2

(ii) $x-y=8$
..........(i)
$3 x-3 y=16$
(ii)
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-1}{-3}=\frac{1}{3}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{8}{16}=\frac{1}{2}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
Therefore, lines have no solution

Hence, inconsistent.
(iii) $2 x+y=6$
$4 x-2 y=4$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{-2}=\frac{-1}{2}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{6}{4}=\frac{3}{2}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
Therefore, lines have unique solution.
Hence, consistent
from (i) from (ii)

$$
\begin{array}{|l|l|l|}
\hline \mathrm{x} & 2 & 3 \\
\hline \mathrm{y} & 2 & 0 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline \mathrm{x} & 2 & 1 \\
\hline \mathrm{y} & 2 & 0 \\
\hline
\end{array}
$$

from graph $x=2, y=2$
(iv) $2 x-2 y=2$
$4 x-4 y=5$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{4}=\frac{1}{2}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-2}{-4}=\frac{1}{2}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{2}{5}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
Therefore, lines have no solution.
Hence, Inconsistent.

Q5. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m. Find the dimensions of the garden

Sol.

Length, $\ell=\mathrm{b}+4$ and Breadth $=\mathrm{b}$
Perimeter of rectangle $=2(\ell+b)$
$\frac{1}{2}[2(\ell+\mathrm{b})]=36$

$$
\begin{equation*}
(\ell+b)=36 \tag{i}
\end{equation*}
$$

As, $\ell=\mathrm{b}+4$, so puting the value of ℓ
in equation (i), we get
$\Rightarrow \mathrm{b}+4+\mathrm{b}=36$
$2 b+4=36$
$2 \mathrm{~b}=32$
$\mathrm{b}=16 \mathrm{~m}, \ell=\mathrm{b}+4=16+4=20 \mathrm{~m}$
Thus, length of garden $=20 \mathrm{~m}$ and breadth of garden $=16 \mathrm{~m}$

Q6. Given the linear equation $2 \mathrm{x}+3 \mathrm{y}-8=0$, write another linear equation in two variables such that the geometrical representation of the pair so formed is :
(i) Intersecting lines
(ii) Parallel lines
(iii) Coincident lines

Sol.
(i) $2 x+3 y-8=0$
(Given equation)
$3 x+2 y+4=0$
(New equation)

Here, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
Hence, the graph of the two equations will be two intersecting lines.
(ii) $2 \mathrm{x}+3 \mathrm{y}-8=0 \quad$ (given equation)
$4 x+6 y-10=0 \quad$ (New equation)

Here, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Hence, the graph of the two equations will be two parallel lines.
(iii)

$2 x+3 y-8=0$	(given equation)
$4 x+6 y-16=0$	(New equation)

Here, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence, the graph of the two equations will be two conicident lines.
Q7. Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Determine the coordinates of the vertices of the triangle formed by these lines and the x -axis, and shade the triangular region.

Sol. $\mathrm{x}-\mathrm{y}+1=0$

x	-1	2
$y=x+1$	0	3

$3 \mathrm{x}+2 \mathrm{y}-12=0 \quad$...(ii)

x	2	4
$y=\frac{12-3 x}{2}$	3	0

The vertices of the triangle are
A $(2,3), \mathrm{B}(-1,0)$ and $\mathrm{C}(4,0)$

