Class X : MATH
 Chapter 5 : Arithmetic Progressions Questions \& Answers - Exercise : 5.1-NCERT Book

Q1. In which of the following situations, does the list of numbers involved make an arithmetic progression, and why?
(i) The taxi fare after each km when the fare is Rs. 15 for the first km and Rs. 8 for each additional km .
(ii) The amount of air present in a cylinder when a vacuum pump removes $1 / 4$ of the air remaining in the cylinder at a time.
(iii) The cost of digging a well after every metre of digging, when it costs Rs. 150 for the first metre and rises by Rs. 50 for each subsequent metre.
(iv) The amount of money in the account every year, when Rs. 10000 is deposited at compound interest at 8% per annum.

Sol. (i) t_{n} denotes the taxi fare (in Rs.) for the first nkm .
Now, $t_{1}=15$,

$$
\mathrm{t}_{2}=15+8=23,
$$

$$
\mathrm{t}_{3}=23+8=31,
$$

$$
\mathrm{t}_{4}=31+8=39, \ldots .
$$

List of fares after $1 \mathrm{~km}, 2 \mathrm{~km}, 3 \mathrm{~km}, 4 \mathrm{~km}, \ldots$. respectively is $15,23,31,39, \ldots$ (in Rs.).
Here, $\mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}=\mathrm{t}_{4}-\mathrm{t}_{3}=\ldots=8$.
Thus, the list forms an AP.
(ii) $\mathrm{t}_{1}=\mathrm{x}$ units; $\mathrm{t}_{2}=\mathrm{x}-\frac{1}{4} \mathrm{x}=\frac{3}{4} \mathrm{x}$ units;
$t_{3}=\frac{3}{4} x-\frac{1}{4}\left(\frac{3}{4} x\right)=\frac{3}{4} x-\frac{3}{16} x=\frac{9}{16} x$ units
$t_{4}=\frac{9}{16} x-\frac{1}{4}\left(\frac{9}{16} x\right)=\frac{27}{64} x$ units
The list of numbers is $x, \frac{3}{4} x, \frac{9}{16} x, \frac{27}{64} x, \ldots$.
It is not an AP because $t_{2}-t_{1} \neq t_{3}-t_{2}$.
(iii) Cost of digging for first metre $=150$

Cost of digging for first 2 metres
$=150+50=200$
Cost of digging for first 3 metres
$=200+50=250$
Cost of digging for first 4 metres
$=250+50=300$
Clearly, 150, 200, 250, 300.... forms an A.P.
Here, $\mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}=\mathrm{t}_{4}-\mathrm{t}_{3}=\ldots=50$.
Thus, the list forms an AP.
(iv) We know that if Rs P is deposited at $\mathrm{r} \%$ compound interest per annum for n years, our money will be $\mathrm{P}\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}}$ after n years.

Therefore, after every year, our money will be

$$
\begin{aligned}
& 10000\left(1+\frac{8}{100}\right), 10000\left(1+\frac{8}{100}\right)^{2} \\
& 10000\left(1+\frac{8}{100}\right)^{3}, 10000\left(1+\frac{8}{100}\right)^{4}, \ldots
\end{aligned}
$$

Clearly, adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.

Q2. Write first four terms of the AP, when the first term a and the common difference d are given as follows:
$\begin{array}{ll}\text { (i) } a=10, d=10 & \text { (ii) } a=-2 \quad d=0\end{array}$
(iii) $\mathrm{a}=4, \mathrm{~d}=-3 \quad$ (iv) $\mathrm{a}=-1, \mathrm{~d}=1 / 2$
(v) $\mathrm{a}=-1.25, \mathrm{~d}=-0.25$

Sol. (i) $t_{1}=a=10$,
$\mathrm{t}_{2}=10+\mathrm{d}=10+10=20$,
$\mathrm{t}_{3}=20+\mathrm{d}=20+10=30$,
$\mathrm{t}_{4}=30+\mathrm{d}=30+10=40, \ldots$.
Thus, the AP is $10,20,30,40, \ldots$
(ii) Given $\mathrm{a}=-2$ and $\mathrm{d}=0$
$\mathrm{t}_{1}=-2, \mathrm{t}_{2}=-2+0=-2$,
$\mathrm{t}_{3}=-2+0=-2, \mathrm{t}_{4}=-2+0=-2, \ldots$.
Thus, the AP is $-2,-2,-2,-2, \ldots$
(iii) $\mathrm{a}=4, \mathrm{~d}=-3$
$\mathrm{t}_{1}=\mathrm{a}=4$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=4-3=1$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=1-3=-2$
$\mathrm{t}_{4}=\mathrm{a}_{3}+\mathrm{d}=-2-3=-5$

Therefore, the series will be $4,1,-2-5 \ldots$
First four terms of this A.P. will be $4,1,-2$
and -5 .
(iv) $\mathrm{a}=-1, \mathrm{~d}=\frac{1}{2}$
$\mathrm{t}_{1}=\mathrm{a}=-1$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=-1+\frac{1}{2}=-\frac{1}{2}$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=-\frac{1}{2}+\frac{1}{2}=0$
$\mathrm{t}_{4}=\mathrm{a}_{3}+\mathrm{d}=0+\frac{1}{2}=\frac{1}{2}$
Clearly, the series will be
$-1,-\frac{1}{2}, 0, \frac{1}{2}$.
First four terms of this A.P. will be
$-1,-\frac{1}{2}, 0$ and $-\frac{1}{2}$
(v) $\mathrm{a}=-1.25, \mathrm{~d}=-0.25$
$\mathrm{t}_{1}=\mathrm{a}=-1.25$
$\mathrm{t}_{2}=\mathrm{a}_{1}+\mathrm{d}=-1.25-0.25=-1.50$
$\mathrm{t}_{3}=\mathrm{a}_{2}+\mathrm{d}=-1.50-0.25=-1.75$
$\mathrm{t}_{4}=\mathrm{a}_{3}+\mathrm{d}=-1.75-0.25=-2.00$
Clearly, the series will be $-1.25,-1.50,-1.75$,
First four terms of this A.P. will be -1.25 ,
$-1.50,-1.75$ and -2.00 .

Q3. For the following APs, write the first term and the common difference :
(i) $3,1,-1,-3, \ldots$
(ii) $-5,-1,3,7, \ldots$.
(iii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \ldots$.
(iv) $0.6,1.7,2.8,3.9, \ldots$

Sol. (i) $\mathrm{a}=3, \mathrm{~d}=\mathrm{t}_{2}-\mathrm{t}_{1}=1-3=-2$,
i.e., $d=-2$
(ii) $\mathrm{a}=-5, \mathrm{~d}=4$
(iii) $a=\frac{1}{3}$

$$
\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}
$$

(iv) $0.6,1.7,2.8,3.9 \ldots$
$\mathrm{a}=0.6$
$\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}$
$=1.7-0.6$
$=1.1$

Q4. Which of the following are APs ? If they form an AP, find the common difference d and write three more terms.
(i) $2,4,8,16, \ldots$.
(ii) $2, \frac{5}{2}, 3, \frac{7}{2}, \ldots$
(iii) $-1.2,-3.2,-5.2,-7.2, \ldots$.
(iv) $-10,-6,-2,2, \ldots .$.
(v) $3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots$
(vi) $0.2,0.22,0.222,0.2222, \ldots$.
(vii) $0,-4,-8,-12, \ldots$.
(viii) $-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots$.
(ix) $1,3,9,27, \ldots \ldots$
(x) $\mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}, 4 \mathrm{a}, \ldots .$.
(xi) $a, a^{2}, a^{3}, a^{4}, \ldots$
(xii) $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots$.
(xiii) $\sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots$.
(xiv) $1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots$
(xv) $1^{2}, 5^{2}, 7^{2}, 73, \ldots$.

Sol. (i) Not an AP because $t_{2}-t_{1}=2$
and $t_{3}-t_{2}=8-4=4$,
i.e., $\mathrm{t}_{2}-\mathrm{t}_{1} \neq \mathrm{t}_{3}-\mathrm{t}_{2}$.
(ii) It is an AP. $a=2, d=1 / 2$
$\left[\because \mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}=\mathrm{t}_{4}-\mathrm{t}_{3}=1 / 2\right]$
$\mathrm{t}_{5}=\frac{7}{2}+\frac{1}{2}=4, \mathrm{t}_{6}=4+\frac{1}{2}=\frac{9}{2}$,
$\mathrm{t}_{7}=\frac{9}{2}+\frac{1}{2}=5$.
(iii) We have : $-1.2,-3.2,-5.2,-7.2, \ldots$.
$\therefore \mathrm{t}_{1}=-1.2, \mathrm{t}_{2}=-3.2, \mathrm{t}_{3}=-5.2, \mathrm{t}_{4}=-7.2$
$\mathrm{t}_{2}-\mathrm{t}_{1}=-3.2+1.2=-2$
$\mathrm{t}_{3}-\mathrm{t}_{2}=-5.2+3.2=-2$
$\mathrm{t}_{4}-\mathrm{t}_{3}=-7.2+5.2=-2$
$\because \mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}=\mathrm{t}_{4}-\mathrm{t}_{3}=-2$
$\Rightarrow \mathrm{d}=-2$
\therefore The given numbers from an A.P. such that

$$
\mathrm{d}=-2 .
$$

Now, $\mathrm{t}_{5}=\mathrm{t}_{4}+(-2)=-7.2+(-2)=-9.2$,
$\mathrm{t}_{6}=\mathrm{t}_{5}+(-2)=-9.2+(-2)=-11.2$
and $\mathrm{t}_{7}=\mathrm{t}_{6}+(-2)$
$=-11.2+(-2)=-13.2$
Thus, $\mathrm{d}=-2$ and $\mathrm{t}_{5}=-9.2, \mathrm{t}_{6}=-11.2$ and $\quad \mathrm{t}_{7}=-13.2$
(iv) It is an AP.
$a=-10, d=4, t_{5}=6, t_{6}=10, t_{7}=14$.
(v) It is an AP.
$\mathrm{a}=3, \mathrm{~d}=\sqrt{2}$
$t_{5}=3+3 \sqrt{2}+\sqrt{2}=3+4 \sqrt{2}$,
$\mathrm{t}_{6}=3+5 \sqrt{2}, \mathrm{t}_{7}=3+6 \sqrt{2}$.
(vi) It is not AP.

$$
\begin{aligned}
& t_{2}-t_{1}=0.22-0.2=0.02, \\
& t_{3}-t_{2}=0.222-0.22=0.002, \ldots
\end{aligned}
$$

i.e., $\mathrm{t}_{2}-\mathrm{t}_{1} \neq \mathrm{t}_{3}-\mathrm{t}_{2}$.
(vii) We have : $0,-4,-8,-12, \ldots \ldots . . .$.

$$
\therefore \mathrm{t}_{1}=0, \mathrm{t}_{2}=-4, \mathrm{t}_{3}=-8, \mathrm{t}_{4}=-12
$$

$\mathrm{t}_{2}-\mathrm{t}_{1}=-4-0=-4$
$\mathrm{t}_{3}-\mathrm{t}_{2}=-8+4=-4$
$\mathrm{t}_{4}-\mathrm{t}_{3}=-12+8=-4$
$\because \mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}=\mathrm{t}_{4}-\mathrm{t}_{3}=-4 \Rightarrow \mathrm{~d}=-4$
\therefore The given numbers from an A.P.
Now, $\mathrm{t}_{5}=\mathrm{t}_{4}+(-4)=-12+(-4)=-16$
$\mathrm{t}_{6}=\mathrm{t}_{5}+(-4)=-16+(-4)=-20$
$\mathrm{t}_{7}=\mathrm{t}_{6}+(-4)=-20+(-4)=-24$
Thus, $\mathrm{d}=-4$ and $\mathrm{t}_{5}=-16, \mathrm{t}_{6}=-20, \mathrm{t}_{7}=-24$.
(viii) We have : $-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots .$.
$\therefore \mathrm{t}_{1}=\mathrm{t}_{2}=\mathrm{t}_{3}=\mathrm{t}_{4}=-\frac{1}{2}$
$\mathrm{t}_{2}-\mathrm{t}_{1}=0, \mathrm{t}_{3}-\mathrm{t}_{2}=0, \mathrm{t}_{4}-\mathrm{t}_{3}=0 \Rightarrow \mathrm{~d}=0$
\therefore The given numbers from an A.P.
Now, $\mathrm{t}_{5}=-\frac{1}{2}+0=-\frac{1}{2}$
$\mathrm{t}_{6}=-\frac{1}{2}+0=-\frac{1}{2}, \mathrm{t}_{7}=-\frac{1}{2}+0=-\frac{1}{2}$

Thus, $\mathrm{d}=0$ and $\mathrm{t}_{5}=-\frac{1}{2}, \mathrm{t}_{6}=-\frac{1}{2}, \mathrm{t}_{7}=-\frac{1}{2}$
(ix) Not an A.P. Here, $\mathrm{t}_{2}-\mathrm{t}_{1} \neq \mathrm{t}_{3}-\mathrm{t}_{2}$.
(x) We have : a, 2a, 3a, 4a,

$$
\begin{aligned}
\therefore \quad & t_{1}=a, t_{2}=2 a, t_{3}=3 a, t_{4}=4 a \\
& t_{2}-t_{1}=2 a-a=a, \\
& t_{3}-t_{2}=3 a-2 a=a \text { and } \\
& t_{4}-t_{3}=4 a-3 a=a \\
\because \quad & t_{2}-t_{1}=t_{3}-t_{2}=t_{4}-t_{3}=a \\
\Rightarrow & d=a
\end{aligned}
$$

\therefore The given numbers from an A.P.
Now, $\mathrm{t}_{5}=\mathrm{t}_{4}+\mathrm{a}=4 \mathrm{a}+\mathrm{a}=5 \mathrm{a}, \mathrm{t}_{6}=\mathrm{t}_{5}+\mathrm{a}$
$=5 \mathrm{a}+\mathrm{a}=6 \mathrm{a}$ and $\mathrm{t}_{7}=\mathrm{t}_{6}+\mathrm{a}=6 \mathrm{a}+\mathrm{a}=7 \mathrm{a}$
Thus, $\mathrm{d}=\mathrm{a}$ and $\mathrm{t}_{5}=5 \mathrm{a}, \mathrm{t}_{6}=6 \mathrm{a}, \mathrm{t}_{7}=7 \mathrm{a}$
(xi) Not an AP if $\mathrm{a} \neq 1$.

Here, $\mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{a}^{2}-\mathrm{a}=\mathrm{a}(1-\mathrm{a})$,

$$
\begin{aligned}
& t_{3}-t_{2}=a^{3}-a^{2}=a^{2}(1-a) \\
& t_{3}-t_{2} \neq t_{2}-t_{1} \text { when } a \neq 1 .
\end{aligned}
$$

It will be an AP if $\mathrm{a}=1$.
Hence, the given sequence is an AP only when $\mathrm{a}=1$.
In this case, first term $=1$,
common difference $=0$
(xii) $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots$ can be rewritten as

$$
\begin{aligned}
& \sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, \ldots . . \\
& a=\sqrt{2}, \mathrm{~d}=\sqrt{2} \\
& \mathrm{t}_{5}=5 \sqrt{2}, \mathrm{t}_{6}=6 \sqrt{2}, \mathrm{t}_{7}=7 \sqrt{2}, \\
& \text { i.e., } \mathrm{t}_{5}=\sqrt{50}, \mathrm{t}_{6}=\sqrt{72}, \mathrm{t}_{7}=\sqrt{98} .
\end{aligned}
$$

(xiii) $\sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots$ can be rewritten as

$$
\sqrt{3}, \sqrt{2} \times \sqrt{3}, 3,2 \sqrt{3}, \ldots
$$

Here, $\mathrm{t}_{2}-\mathrm{t}_{1} \neq \mathrm{t}_{3}-\mathrm{t}_{2}$
Therefore, the given list is not an AP.
(xiv) We have $1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots \ldots . .$.

$$
\begin{aligned}
& \left.\therefore \begin{array}{r}
t_{1}=1^{2}=1 \\
t_{2}=3^{2}=9
\end{array}\right\} \Rightarrow t_{2}-t_{1}=9-1=8 \\
& \left.\begin{array}{r}
t_{3}=5^{2}=25 \\
t_{4}=7^{2}=49
\end{array}\right\} \Rightarrow t_{4}-t_{3}=49-25=24
\end{aligned}
$$

$\because \mathrm{t}_{2}-\mathrm{t}_{1} \neq \mathrm{t}_{4}-\mathrm{t}_{3}$
\therefore The given numbers do not form an A.P.
(xv) $1^{2}, 5^{2}, 7^{2}, 73, \ldots$ can be rewritten as $1,25,49,73, \ldots$.

Here, $\mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{t}_{3}-\mathrm{t}_{2}=\mathrm{t}_{4}-\mathrm{t}_{3}=\ldots . .=24$
Hence, it is an AP.
$\therefore \mathrm{t}_{5}=97, \mathrm{t}_{6}=121, \mathrm{t}_{7}=145$

